Document Type

Article

Publication Date

3-31-2020

Abstract

Rubidium Rydberg atoms in either |mj| sublevel of the 36p3/2 state can exchange energy via Stark-tuned Förster resonances, including two-, three-, and four-body dipole-dipole interactions. Three-body interactions of this type were first reported and categorized by Faoro et al. [Nat. Commun. 6, 8173 (2015)] and their Borromean nature was confirmed by Tretyakov et al. [Phys. Rev. Lett. 119, 173402 (2017)]. We report the time dependence of the N-body Förster resonance N×36p3/2,|mj|=1/2→36s1/2+37s1/2+(N−2)×36p3/2,|mj|=3/2, for N=2, 3, and 4, by measuring the fraction of initially excited atoms that end up in the 37s1/2 state as a function of time. The essential features of these interactions are captured in an analytical model that includes only the many-body matrix elements and neighboring atom distribution. A more sophisticated simulation reveals the importance of beyond-nearest-neighbor interactions and of always-resonant interactions.

Comments

The item available here for download is the final version of the article originally published in Physical Review Letters, vol. 124 (13), 133402. Copyright 2020, American Physical Society.

DOI: 10.1103/PhysRevLett.124.133402

Share

COinS