Biophysical Characterization and Catalytic Reactivity of Rubrerythrin and Symerythrin Model Proteins
Submission Date
4-19-2017
Document Type
Paper- Restricted to Campus Access
Department
Biochemistry & Molecular Biology
Adviser
Amanda Reig
Committee Member
Julin Everett
Committee Member
Rebecca Roberts
Committee Member
Amanda Reig
Department Chair
Eric Williamsen
Department Chair
Anthony Lobo
External Reviewer
Kate Buettner
Distinguished Honors
This paper has met the requirements for Distinguished Honors.
Project Description
Rubrerythrins (Rbr) and symerythrins (Sym) are diiron carboxylate enzymes that exhibit ferroxidase activity and enhanced preferential peroxidase activity compared to other members of the ferritin-like superfamily (FLSF). This peroxidase activity is thought to result from the one or two additional carboxylates in the active sites of Rbr and Sym, compared to the FLSF archetype. However, the relationship between these structural features and the altered function is currently not well understood. Model proteins based on the de novo-designed G4DFsc system have been created to investigate this relationship. G4DFsc structurally replicates the canonical 4-helix bundle and 2-histidine/4-carboxylate active site structure of FLSF enzymes as well as mimics their reactivities. Aspartate (Asp, D) or glutamate (Glu, E) residues were introduced at positions 14 and/or 47 to generate Rbr- and Sym-like active sites within the G4DFsc bundle. The structural and catalytic properties of these systems were investigated using metal-binding, protein-folding, and reactivity assays at pH 7 and pH 7.5. Data show that the double mutants exhibit the weakest metal-binding capacity at pH 7. These proteins also show slower rates of 4-aminophenol oxidation than the original G4DFsc protein. The G47D variant shows the greatest catalytic capacity, with 4-aminophenol oxidation rates increased 11-fold over control reactions and 2-fold compared to G4DFsc. These results provide insight into how particular carboxylate residues in the G4DFsc active site affect its ability to react with dioxygen.
Recommended Citation
Pellegrino, Jenna, "Biophysical Characterization and Catalytic Reactivity of Rubrerythrin and Symerythrin Model Proteins" (2017). Biochemistry and Molecular Biology Honors Papers. 3.
https://digitalcommons.ursinus.edu/biochem_hon/3