

Ursinus College [Digital Commons @ Ursinus College](https://digitalcommons.ursinus.edu/)

[Physics and Astronomy Summer Fellows](https://digitalcommons.ursinus.edu/physics_astro_sum) **Student Research** Student Research

7-21-2023

Enhanced Quantum Chemistry With Machine Learning

Brock Dyer Ursinus College, brdyer@ursinus.edu

Follow this and additional works at: [https://digitalcommons.ursinus.edu/physics_astro_sum](https://digitalcommons.ursinus.edu/physics_astro_sum?utm_source=digitalcommons.ursinus.edu%2Fphysics_astro_sum%2F44&utm_medium=PDF&utm_campaign=PDFCoverPages) \bullet Part of the [Computational Chemistry Commons](https://network.bepress.com/hgg/discipline/1439?utm_source=digitalcommons.ursinus.edu%2Fphysics_astro_sum%2F44&utm_medium=PDF&utm_campaign=PDFCoverPages), Numerical Analysis and Scientific Computing [Commons](https://network.bepress.com/hgg/discipline/147?utm_source=digitalcommons.ursinus.edu%2Fphysics_astro_sum%2F44&utm_medium=PDF&utm_campaign=PDFCoverPages), and the [Physics Commons](https://network.bepress.com/hgg/discipline/193?utm_source=digitalcommons.ursinus.edu%2Fphysics_astro_sum%2F44&utm_medium=PDF&utm_campaign=PDFCoverPages) [Click here to let us know how access to this document benefits you.](https://ursinus.co1.qualtrics.com/jfe/form/SV_1RIyfqzdxsWfMQ5)

Recommended Citation

Dyer, Brock, "Enhanced Quantum Chemistry With Machine Learning" (2023). Physics and Astronomy Summer Fellows. 44. [https://digitalcommons.ursinus.edu/physics_astro_sum/44](https://digitalcommons.ursinus.edu/physics_astro_sum/44?utm_source=digitalcommons.ursinus.edu%2Fphysics_astro_sum%2F44&utm_medium=PDF&utm_campaign=PDFCoverPages)

This Paper is brought to you for free and open access by the Student Research at Digital Commons @ Ursinus College. It has been accepted for inclusion in Physics and Astronomy Summer Fellows by an authorized administrator of Digital Commons @ Ursinus College. For more information, please contact [aprock@ursinus.edu.](mailto:aprock@ursinus.edu)

Enhanced Quantum Chemistry with Machine Learning.

Brock Dyer, Chemistry and Physics Major, Class of 2025 Professor Ross B. Martin-Wells Ursinus College Physics Department $V(x)$

What is Quantum Chemistry?

- wat is Quantum Chemistry?
• Quantum chemistry (QC) is a branch of
• Chemistry that sits on the boundary between chemistry that sits on the boundary between quantum mechanics and physical chemistry. what is Quantum Chemistry?
• Quantum chemistry (QC) is a branch of
• chemistry that sits on the boundary between
• The goal of QC is to determine the chemical
• The goal of QC is to determine the chemical
• and physical pr
- and physical properties of a molecule or material through quantum mechanical calculations.

Why Does This Matter?

- Thy Does This Matter?
• Quantum chemistry allows chemists to do
• doctrolly any experiment they could theoretically any experiment they could desire. we provide the Matter of the Matter of the Matter of the theoretically any experiment they could desire.

• Months in a lab could be whittled down to just

hours with parallel computations. • Quantum chemistry allows chemists to do
theoretically any experiment they could
desire.
• Months in a lab could be whittled down to ju
hours with parallel computations.
• Spending on solvents, reagents, and
standards cou
- hours with parallel computations.
- standards could be cut by a large percentage.

Practical Application Tactical Application

Practical Application **Predicted Computer Verified Computer Veri**

Practical Application **Predicted Computer Verified Computer Veri**

Practical Application Tactical Application

Outline of Progress Utline of Progress 1. Spin operators

1. Spin operators

2. Eigenvalues and Eigenvectors

1. Spin operators

1. Spin operators

1. Spin operators

Time evolution of particles Utline of Progress

1. Study of quantum spin states

1. Spin operators

2. Eigenvalues and Eigenvectors

2. Time evolution of particles

1. Time evolution operator

2. Energy Operator 1. Time **of Progress**

1. Spin operators

2. Eigenvalues and Eigenvectors

1. Time evolution of particles

1. Time evolution operator

2. Energy Operator

3. Magnetic Resonance **1. IIME Of Progress**

2. Eigenvalues and Eigenvectors

2. Eigenvalues and Eigenvectors

2. Eigenvalues and Eigenvectors

1. Time evolution operator

2. Energy Operator

3. Magnetic Resonance

Ammonia Masers **Solution Study of quantum spin states

3. Spin operators

2. Eigenvalues and Eigenvectors

2. Eigenvalues and Eigenvectors

1. Time evolution operator

2. Energy Operator

3. Magnetic Resonance

Ammonia Masers

1. Two-sta** 1. Study of quantum spin states

1. Spin operators

2. Eigenvalues and Eigenvectors

2. Time evolution of particles

1. Time evolution operator

2. Energy Operator

3. Magnetic Resonance

3. Ammonia Masers

1. Two-state qu

- -
	- 2. Spin operators

	2. Eigenvalues and Eigenvectors

	1. Time evolution of particles

	1. Time evolution operator

	2. Energy Operator

	3. Magnetic Resonance

	Ammonia Masers

	1. Two-state quantum system

	2. Tunneling

	3. Energ 2. Eigenvalues and Eigenvectors

	Time evolution of particles

	1. Time evolution operator

	2. Energy Operator

	3. Magnetic Resonance

	Ammonia Masers

	1. Two-state quantum system

	2. Tunneling

	3. Energy eigenstates

	Python
- 2. Time evolution of particles

1. Time evolution operator

2. Energy Operator

3. Magnetic Resonance

3. Ammonia Masers

1. Two-state quantum system

2. Tunneling

3. Energy eigenstates

4. Python Programming

1. Harmonic
	-
	-
	-
-
- 1. Time evolution of particles

2. Energy Operator

3. Magnetic Resonance

Ammonia Masers

1. Two-state quantum system

2. Tunneling

3. Energy eigenstates

Python Programming

1. Harmonic Oscillator

2. First Program
	-
	-
- -
	-

Image sources (top to bottom)

https://www.quantum-field-theory.net/discovery-electron-spin/ https://www.acs.org/molecule-of-the-week/archive/a/ammonia.html https://owlcation.com/stem/schrodinger-equation-simple-harmonic-oscillator

Quantum Spin States

-
- vantum Spin States
• Almost every particle in the universe has an intrinsic spin
• Spin states are the direct cause of several fundamental
• aspects of nature, such as orbitals. Pauli exclusion, and wantum Spin States
• Almost every particle in the universe has an intrinsic spin
• Spin states are the direct cause of several fundamental
• aspects of nature, such as orbitals, Pauli exclusion, and
• at a macroscopic scal aspects of nature, such as orbitals, Pauli exclusion, and at a macroscopic scale, magnetism. **Uantum Spin States**
• Almost every particle in the universe has an intrinsic spin
• Spin states are the direct cause of several fundamental
• All spin states are represented by operators, typically
• All spin states are
- denoted \hat{S} (read as "S hat"), that describe the spin of a particle.

$$
\hat{S}_x \rightarrow \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \qquad \hat{S}_x \rightarrow \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}
$$

\n
$$
\hat{S}_y \rightarrow \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \qquad \hat{S}_y \rightarrow \begin{pmatrix} 0 & i & 0 \\ -i & 0 & i \\ 0 & -i & 0 \end{pmatrix}
$$

\n
$$
\hat{S}_z \rightarrow \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \qquad \hat{S}_z \rightarrow \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}
$$

Surprise Linear Algebra!

- First Component of operator matrices are the

A critical component of operator matrices are the

associated eigenvalues and eigenvectors. associated eigenvalues and eigenvectors.
- First Contract and the eigenvalue problem is primarily a linear algebra.

 A critical component of operator matrices are the

 The eigenvalue problem is primarily a linear algebra

 An understanding of linear algebra gi topic, and I had to learn it to continue.
- valid of the University of the Cassociated eigenvalues and eigenvectors.

 A critical component of operator matrices are the

 The eigenvalue problem is primarily a linear algebra

 An understanding of linear algebra gi insight into how computers process quantum mechanical inputs

$\widehat{H}|\psi\rangle = E|\psi\rangle$

 $=$

 $a_{11}b_{11} + a_{12}b_{21} + a_{13}b_{31}$ $a_{11}b_{12} + a_{12}b_{22} + a_{13}b_{32}$ $a_{11}b_{13} + a_{12}b_{23} + a_{13}b_{33}$ $a_{21}b_{11} + a_{22}b_{21} + a_{23}b_{31}$ $a_{21}b_{12} + a_{22}b_{22} + a_{23}b_{32}$ $a_{21}b_{13} + a_{22}b_{23} + a_{23}b_{33}$ $a_{31}b_{11} + a_{32}b_{21} + a_{33}b_{31}$ $a_{31}b_{12} + a_{32}b_{22} + a_{33}b_{32}$ $a_{31}b_{13} + a_{32}b_{23} + a_{33}b_{33}$

Ursinus College

Image Source: Wikimedia Commons

Time Evolution of Quantum Systems me Evolution of Quantum

ystems

• The time evolution operator, $\hat{U}(t)$ is used to

determine how a system behaves over time. **Find the Find of Quantum**
 vstems

• The time evolution operator, $\bar{U}(t)$ is used to

• Time is what gives everything meaning, if the

• Time is what gives everything meaning, if the

worthless.

- determine how a system behaves over time.
- universe was locked at one time, it would be worthless. vertical intervalses and the evolution of the time evolution operator, $\hat{U}(t)$ is used to determine how a system behaves over time.

• Time is what gives everything meaning, if the universe was locked at one time, it wo
- described with the "generator of time evolutions" In the operator, at infinitesides

In the "gene $\widehat{U}(dt)$

In the system of the

$$
\widehat{U}(dt) = 1 - \frac{i}{\hbar} \widehat{H} dt
$$

$$
\widehat{U}^{\dagger}(dt) = 1 + \frac{i}{\hbar} \widehat{H}^{\dagger} dt
$$

Time Evolution of Quantum Systems me Evolution of Quantum

ystems

• The time evolution operator, $\hat{U}(t)$ is used to

determine how a system behaves over time. **Find the Find of Quantum**
 vstems

• The time evolution operator, $\bar{U}(t)$ is used to

• Time is what gives everything meaning, if the

• Time is what gives everything meaning, if the

worthless.

- determine how a system behaves over time.
- universe was locked at one time, it would be worthless. vertical intervalses and the evolution of the time evolution operator, $\hat{U}(t)$ is used to determine how a system behaves over time.

• Time is what gives everything meaning, if the universe was locked at one time, it wo
- described with the "generator of time evolutions" The operator, at infinitesi
described with the "gene $\widehat{U}(dt)$

Energy Operator

- ergy Operator
• The energy operator, also known as the Hamiltonian
• The Hamiltonian takes in a wavefunction and returns is denoted as \widehat{H} and is king of operators • The energy operator, also known as the Hamiltonian

is denoted as \hat{H} and is king of operators

• The Hamiltonian takes in a wavefunction and returns

the energy of it at a specific time.

• This operator plays a cr
- **Paramer of the Hamiltonian Control of the Hamiltonian**
• The energy operator, also known as the Hamiltonian
• The Hamiltonian takes in a wavefunction and returns
• This energy of it at a specific time. the energy of it at a specific time.
- chemistry

Wikimedia Commons

Image Source:

https://maxfacts.uk/diagnosis/tests/mri/detailed

Ursinus College

Magnetic Resonance

agnetic Resonance is a consequence of intrinsic

Franciscommons

Private Commons

Priv spin, as all particles with spin have a magnetic field around them.

 $\sqrt{|\langle -z|\psi(t)\rangle|^2} = \sin^2\frac{\omega_1 t}{4} \sqrt{|\langle +z|\psi(t)\rangle|^2} = \cos^2\frac{\omega_1 t}{4}$

 2 ± 74 $1/\gamma$ 27700077 $0 - \omega$)⁻ + - $\frac{1}{4}$ $2 + \frac{\omega_1}{\omega_1}$ \sim \sim \sim \sim 2, $311\overline{2} \sqrt{60}$ ω $2 \frac{1}{2} \left[\frac{1}{(a)} (a) \right]^{2} + \frac{\omega_1}{2}$ $0 \top \omega$ ⁻⁺ $\uparrow \wedge$ 4) \smile $2 + \frac{\omega_1}{\sqrt{2}}$ 2×11

miage Source:
Wikimedia Commons
Wikimedia Commons

Ammonia Masers

- mmonia Masers
• A common example of a two-state quantum system
• Eevnman in the 1960s. is the ammonia maser, first proposed by Richard Feynman in the 1960s. mmonia Masers

• A common example of a two-state quantum system

is the ammonia maser, first proposed by Richard

Feynman in the 1960s.

• The system is also backed by real experimental data

from labs that commonly use am
- from labs that commonly use ammonia to mase.

$$
\widehat{H} \rightarrow \begin{pmatrix} \langle A|\widehat{H}|A \rangle & \langle A|\widehat{H}|B \rangle \\ \langle B|\widehat{H}|A \rangle & \langle B|\widehat{H}|B \rangle \end{pmatrix} \rightarrow \begin{pmatrix} E_0 & -T \\ -T & E_0 \end{pmatrix}
$$

Graph From: "Ammonia Inversion Energy Levels using Operator Algebra" by S.M. Blinder

The Quantum Harmonic **Oscillator**

- **1e Quantum Harmonic

Scillator

 An exact solvable model for harmonic systems, such

as atoms in an optical lattice or in a diatomic

molecule** as atoms in an optical lattice or in a diatomic molecule. • Quantum Harmonic

• An exact solvable model for harmonic systems, such

as atoms in an optical lattice or in a diatomic

molecule.

• It approximates potential energy as a parabola and

shows the probability of finding a
- shows the probability of finding a molecule in a specific position in that well.

Programming in Python

- Formal Component of this research is computer

To loarn Python I had little to no experience programming, of which I had little to no experience
- For a continuing the analysis of the several program of this research is computer.

 A critical component of this research is computer.

 To learn Python, I made several programs to gain an

 adequate grasp on the funda adequate grasp on the fundamentals.

```
\Boximport numpy as np
 import matplotlib.pyplot as plt
 import scipy as sp
 import sys
 import os.path
 x = int(input("Min value:"))y = int(input("Max value:"))input_list = np.arange(x, y+1)output_list = []combined_list = []\Box for i in range(x, y+1):
     square = i**2print(i, "--"), square)
     output_list.append(square)
 plt.plot(input_list, output_list)
 plt.xlabel("Input")
 plt.ylabel("Output")
 plt.savefig(image_path)
 plt.show()
```


Programming in Python

Formal component of this research is computer

To loarn Python I had little to no experience programming, of which I had little to no experience

For a continuing the analysis of the several program of this research is computer.

• A critical component of this research is computer.

• To learn Python, I made several programs to gain an

• adequate grasp on the funda adequate grasp on the fundamentals.

```
initial = [((\alpha \ln x) * (1/4)) * (1/4)) * (1/4) * (1/4) * (1/4) * (1/4) * (1/4) * (1/4) * (1/4) * (1/4) * (1/4) * (1/4) * (1/4) * (1/4) * (1/4) * (1/4) * (1/4) * (1/4) * (1/4) * (1/4) * (1/4) * (1/4) * (1/4) * (1/4) * (1/4) * (1/4) * (1/4) * (1/4) * (1/4) * (1/4) * (1/4) * (1/4) * (1/4) * (1/
```

```
\existsdef derivative(x, intFunction):
     df = sy.diff(intFunction, x)return df
```
\Box for i in n:

```
raised = (1/math.sqrt(i+1)) * (sy.sqrt(abha/2)) * ((x * initial[i]) - (derivative(x, initial[i])))initial.append(raised)
```

```
x_range = np.arange(-5, 5, 0.01)
y_range = np.arange(0, choice, 1)
```
plt.figure()

```
plt.xlim([-5,5])plt.ylim([-0,choice])
\existsfor r in n:
     plot = sy.lambdify(x, initial[r]**2+(r+0.5))
     n_tturnpoint = -math.sqrt(2*y_t)range[i]+1)
     p_{\text{}}turnpoint = math.sqrt(2*y\_range[i]+1)plt.plot(x_range, plot(x_range), linewidth=2, zorder=2)
     #plt.axvline(x = -math.sqrt(2*y_range[r] + 1), linestyle='dashed', color='#5f5dff', zorder=1)
     #plt.axvline(x = math.sqrt(2*y_range[r] + 1), linestyle='dashed', color='#5f5dff', zorder=1)
     plt.plot(x_range, (x_range**2/2), linestyle='-', color='r', zorder=3)
     plt.plot(-math.sqrt(2*y_range[r] + 1), y_range[r]+0.5, 'o', color='b', zorder=4)
     plt.plot(math.sqrt(2*y_range[r] + 1), y_range[r]+0.5, 'o', color='b', zorder=4)
 plt.show()
```


Next Steps

Acknowledgements CKnowledgements
• Ursinus College
• UC Physics and Chemistry De **EXHOWLedgements
• University Departments
• UC Physics and Chemistry Departments
• Summer Fellows Coordinators** Cknowledgements
• Ursinus College
• UC Physics and Chemistry Departments
• Summer Fellows Coordinators
• Dylan Ford and Ryan R. Walvoord for NMR **Example Concerned School Schools**
• UC Physics and Chemistry Depart
• Summer Fellows Coordinators
• Dylan Ford and Ryan R. Walvoord
• Ross B. Martin-Wells
• John and Dona Dyer

-
-
-
- **Exhowledgements
• Ursinus College
• UC Physics and Chemistry Departments
• Dylan Ford and Ryan R. Walvoord for NMR Data
• Ross B. Martin-Wells** • Ursinus College
• UC Physics and Chemistry Depar
• Summer Fellows Coordinators
• Dylan Ford and Ryan R. Walvoord
• Ross B. Martin-Wells
• John and Dona Dyer
-
-

Lab Chemical Spending

Laboratory Chemical Budgets in 2010, N=140 Average Spending across all labs is \$48,400

Standard Lab Chemicals (Solvents, Acids, Standards, Dyes)

Organic/Research Chemicals

Separations Chemicals

Other

0% 10% 20% 30% 40% 50% 60% 70% 80%