

Ursinus College
Digital Commons @ Ursinus College

Physics and Astronomy Summer Fellows

Student Research

7-21-2023

Enhanced Quantum Chemistry With Machine Learning

Brock Dyer Ursinus College, brdyer@ursinus.edu

Follow this and additional works at: https://digitalcommons.ursinus.edu/physics_astro_sum Part of the Computational Chemistry Commons, Numerical Analysis and Scientific Computing Commons, and the Physics Commons Click here to let us know how access to this document benefits you.

Recommended Citation

Dyer, Brock, "Enhanced Quantum Chemistry With Machine Learning" (2023). *Physics and Astronomy Summer Fellows*. 44. https://digitalcommons.ursinus.edu/physics_astro_sum/44

This Paper is brought to you for free and open access by the Student Research at Digital Commons @ Ursinus College. It has been accepted for inclusion in Physics and Astronomy Summer Fellows by an authorized administrator of Digital Commons @ Ursinus College. For more information, please contact aprock@ursinus.edu.

Enhanced Quantum Chemistry with Machine Learning.

Brock Dyer, Chemistry and Physics Major, Class of 2025 Professor Ross B. Martin-Wells Ursinus College Physics Department

What is Quantum Chemistry?

- Quantum chemistry (QC) is a branch of chemistry that sits on the boundary between quantum mechanics and physical chemistry.
- The goal of QC is to determine the chemical and physical properties of a molecule or material through quantum mechanical calculations.

Why Does This Matter?

- Quantum chemistry allows chemists to do theoretically any experiment they could desire.
- Months in a lab could be whittled down to just hours with parallel computations.
- Spending on solvents, reagents, and standards could be cut by a large percentage.

Predicted

Computer Verified

Predicted

Computer Verified

Predicted

Computer Verified

Predicted

Computer Verified

Outline of Progress

- 1. Study of quantum spin states
 - 1. Spin operators
 - 2. Eigenvalues and Eigenvectors
- 2. Time evolution of particles
 - 1. Time evolution operator
 - 2. Energy Operator
 - 3. Magnetic Resonance
- 3. Ammonia Masers
 - 1. Two-state quantum system
 - 2. Tunneling
 - 3. Energy eigenstates
- 4. Python Programming
 - 1. Harmonic Oscillator
 - 2. First Program

Image sources (top to bottom)

https://www.quantum-field-theory.net/discovery-electron-spin/ https://www.acs.org/molecule-of-the-week/archive/a/ammonia.html https://owlcation.com/stem/schrodinger-equation-simple-harmonic-oscillator

Quantum Spin States

- Almost every particle in the universe has an intrinsic spin
- Spin states are the direct cause of several fundamental aspects of nature, such as orbitals, Pauli exclusion, and at a macroscopic scale, magnetism.
- All spin states are represented by operators, typically denoted *Ŝ* (read as "S hat"), that describe the spin of a particle.

$$\hat{S}_{x} \stackrel{\rightarrow}{_{z}} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \qquad \hat{S}_{x} \stackrel{\rightarrow}{_{z}} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \hat{S}_{y} \stackrel{\rightarrow}{_{z}} \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \qquad \hat{S}_{y} \stackrel{\rightarrow}{_{z}} \begin{pmatrix} 0 & i & 0 \\ -i & 0 & i \\ 0 & -i & 0 \end{pmatrix} \hat{S}_{z} \stackrel{\rightarrow}{_{z}} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \qquad \hat{S}_{z} \stackrel{\rightarrow}{_{z}} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$

Surprise Linear Algebra!

- A critical component of operator matrices are the \bullet associated eigenvalues and eigenvectors.
- The eigenvalue problem is primarily a linear algebra topic, and I had to learn it to continue.
- An understanding of linear algebra gives critical insight into how computers process quantum mechanical inputs

$\widehat{H}|\psi\rangle = E|\psi\rangle$

=

a11	<i>a</i> ₁₂	a13	1 1	b ₁₁	b_{12}	b_{13} .
a_{21}	a22	a_{23}	×	b_{21}	b_{22}	b_{23}
a ₃₁	a_{32}	a33 .		b ₃₁	b_{32}	b33

 $a_{11}b_{11} + a_{12}b_{21} + a_{13}b_{31}$ $a_{11}b_{12} + a_{12}b_{22} + a_{13}b_{32}$ $a_{11}b_{13} + a_{12}b_{23} + a_{13}b_{33}$ $a_{21}b_{11} + a_{22}b_{21} + a_{23}b_{31}$ $a_{21}b_{12} + a_{22}b_{22} + a_{23}b_{32}$ $a_{21}b_{13} + a_{22}b_{23} + a_{23}b_{33}$ $a_{31}b_{11} + a_{32}b_{21} + a_{33}b_{31}$ $a_{31}b_{12} + a_{32}b_{22} + a_{33}b_{32}$ $a_{31}b_{13} + a_{32}b_{23} + a_{33}b_{33}$

Image Source: https://www.mymathtables.com/calculator/matrix/3-cross-3-matrix-multiplication.html

Ursinus College

Image Source: Wikimedia Commons

Time Evolution of Quantum Systems

- The time evolution operator, $\widehat{U}(t)$ is used to determine how a system behaves over time.
- Time is what gives everything meaning, if the universe was locked at one time, it would be worthless.
- The operator, at infinitesimal increment, can be described with the "generator of time evolutions"

$$\widehat{U}(dt) = 1 - \frac{i}{\hbar}\widehat{H}dt$$
$$\widehat{U}^{\dagger}(dt) = 1 + \frac{i}{\hbar}\widehat{H}^{\dagger}dt$$

Time Evolution of Quantum Systems

- The time evolution operator, $\widehat{U}(t)$ is used to determine how a system behaves over time.
- Time is what gives everything meaning, if the universe was locked at one time, it would be worthless.
- The operator, at infinitesimal increment, can be described with the "generator of time evolutions"

$$\widehat{U}(dt) = 1 - \frac{i}{\hbar}\widehat{H}dt$$
$$\widehat{U}^{\dagger}(dt) = 1 + \frac{i}{\hbar}\widehat{H}^{\dagger}dt$$

Energy Operator

- The energy operator, also known as the Hamiltonian is denoted as \widehat{H} and is king of operators
- The Hamiltonian takes in a wavefunction and returns the energy of it at a specific time.
- This operator plays a critical role in quantum chemistry

$$\widehat{H} = \frac{-gq}{2mc}\widehat{S} \cdot (B_1 \cos(\omega t) i + B_0 k)$$
$$\begin{pmatrix} E_0 & -T \\ -T & E_0 \end{pmatrix} \begin{pmatrix} \langle 1|\psi \rangle \\ \langle 2|\psi \rangle \end{pmatrix} = E \begin{pmatrix} \langle 1|\psi \rangle \\ \langle 2|\psi \rangle \end{pmatrix}$$

Image Source: Wikimedia Commons

Image Source:

https://maxfacts.uk/diagnosis/tests/mri/detailed

Ursinus College

Magnetic Resonance

 Magnetic resonance is a consequence of intrinsic spin, as all particles with spin have a magnetic field around them.

 $|\langle -z|\psi(t)\rangle|^{2} = \sin^{2}\frac{\omega_{1}t}{4} \qquad |\langle +z|\psi(t)\rangle|^{2} = \cos^{2}\frac{\omega_{1}t}{4}$ $|\langle -z|\psi(t)\rangle|^{2} = \frac{\omega_{1}^{2}/4}{(\omega_{0} - \omega)^{2} + \omega_{1}^{2}/4} \sin^{2}\frac{t}{2}\sqrt{(\omega_{0} - \omega)^{2} + \omega_{1}^{2}/4}$

Image Source: Wikimedia Commons

Image Source: Bruker Ascend NMRs

			\sim 1		
	rcir	11c	$\cup \Delta$	AG	$\mathbf{\mathbf{A}}$
	T 2TT	IUS		ncg	\mathbf{r}

Ammonia Masers

- A common example of a two-state quantum system is the ammonia maser, first proposed by Richard Feynman in the 1960s.
- The system is also backed by real experimental data from labs that commonly use ammonia to mase.

$$\widehat{H} \to \begin{pmatrix} \langle A | \widehat{H} | A \rangle & \langle A | \widehat{H} | B \rangle \\ \langle B | \widehat{H} | A \rangle & \langle B | \widehat{H} | B \rangle \end{pmatrix} \to \begin{pmatrix} E_0 & -T \\ -T & E_0 \end{pmatrix}$$

Graph From: "Ammonia Inversion Energy Levels using Operator Algebra" by S.M. Blinder

The Quantum Harmonic Oscillator

- An exact solvable model for harmonic systems, such as atoms in an optical lattice or in a diatomic molecule.
- It approximates potential energy as a parabola and shows the probability of finding a molecule in a specific position in that well.

Programming in Python

- A critical component of this research is computer programming, of which I had little to no experience
- To learn Python, I made several programs to gain an adequate grasp on the fundamentals.

```
⊡import numpy as np
 import matplotlib.pyplot as plt
 import scipy as sp
 import sys
 import os.path
 x = int(input("Min value: "))
 y = int(input("Max value: "))
 input_list = np.arange(x, y+1)
 output_list = []
 combined_list = []
\Box for i in range(x, y+1):
     square = i**2
     print(i, "-->", square)
     output_list.append(square)
 plt.plot(input_list, output_list)
 plt.xlabel("Input")
 plt.ylabel("Output")
 plt.savefig(image_path)
 plt.show()
```


Programming in Python

- A critical component of this research is computer programming, of which I had little to no experience
- To learn Python, I made several programs to gain an adequate grasp on the fundamentals.

```
initial = [((alpha / pi) ** (1/4)) * sy.exp((-m * w * (x**2))/(2 * hbar))]
```

```
edef derivative(x, intFunction):
    df = sy.diff(intFunction, x)
    return df
```

⊡for i in n:

```
raised = (1/math.sqrt(i+1)) * (sy.sqrt(alpha/2)) * ((x * initial[i]) - (derivative(x, initial[i])))
initial.append(raised)
```

```
x_range = np.arange(-5, 5, 0.01)
y_range = np.arange(0, choice, 1)
```

plt.figure()

```
plt.xlim([-5,5])
plt.ylim([-0,choice])

=for r in n:
    plot = sy.lambdify(x, initial[r]**2+(r+0.5))
    n_turnpoint = -math.sqrt(2*y_range[i]+1)
    p_turnpoint = math.sqrt(2*y_range[i]+1)
    plt.plot(x_range, plot(x_range), linewidth=2, zorder=2)
    #plt.axvline(x = -math.sqrt(2*y_range[r] + 1), linestyle='dashed', color='#5f5dff', zorder=1)
    #plt.axvline(x = math.sqrt(2*y_range[r] + 1), linestyle='dashed', color='#5f5dff', zorder=1)
    plt.plot(x_range, (X_range*2/2), linestyle='-', color='r', zorder=3)
    plt.plot(-math.sqrt(2*y_range[r] + 1), y_range[r]+0.5, 'o', color='b', zorder=4)
    plt.show()
```


Next Steps

Acknowledgements

- Ursinus College
- UC Physics and Chemistry Departments
- Summer Fellows Coordinators
- Dylan Ford and Ryan R. Walvoord for NMR Data
- Ross B. Martin-Wells
- John and Dona Dyer

Lab Chemical Spending

Average Spending across all labs is \$48,400 Laboratory Chemical Budgets in 2010, N=140

Standard Lab Chemicals (Solvents, Acids, Standards, Dyes)

Organic/Research Chemicals

Separations Chemicals

Other

0% 10% 20% 30% 40% 50% 60% 70% 80%

