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Jakob Bernoulli’s Method for Finding Exact Sums of Infinite Series

(Capstone version)

Daniel E. Otero∗ and James A. Sellers†

October 19, 2022

1 On the Convergence and Summation of Infinite Series

Consider this infinite series:
1

2
+

8

10
+

27

50
+

64

250
+ · · · .

Task 1 (a) Prove that the series converges. Be sure to identify which convergence test you

applied and how it justified this claim.

(b) Can you find the exact sum of the series? If so, explain how you determined it.

If you find you can’t, what does your answer in (a) tell you that helps out with

this question?

The questions posed in the above Task should clarify for the reader that knowing that a series

converges is independent from discovering its sum. Consequently, the mastery of tests for convergence

of infinite series, while important for determining whether a given series has a sum, does not help

the mathematician to learn what the series sums to exactly.

As it happens, in standard presentations of the theory of infinite series, we often stop short of

finding the exact values of most of the convergent series we encounter. The focus of the theory

of series is placed squarely on developing tests for determining convergence, and there is a long

list of such criteria that we are asked to practice and apply (the comparison test, the ratio test,

the root test, the integral test, etc.). To be sure, there are justifiable reasons for being concerned

with the convergence of series—there is no hope to determine the sum of a series if we can show

that it diverges!—but if we demonstrate that a series does converge, we are generally no closer to

determining its sum. Indeed, the student introduced to series comes across few examples of these

objects whose sums are precisely determinable. Notable exceptions to this include geometric series,

∗Department of Mathematics, Xavier University, Cincinnati, OH, 45207-4441; otero@xavier.edu.
†Department of Mathematics and Statistics, University of Minnesota Duluth, Duluth, MN, 55812;

jsellers@d.umn.edu.
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such as 1 + 1
2 + 1

4 + 1
8 + · · · = 2, and telescoping series like

1

2
+

1

6
+

1

12
+

1

20
+ · · · =

(
1− 1

2

)
+

(
1

2
− 1

3

)
+

(
1

3
− 1

4

)
+

(
1

4
− 1

5

)
+ · · ·

= 1 +

(
−1

2
+

1

2

)
+

(
−1

3
+

1

3

)
+

(
−1

4
+

1

4

)
+

(
−1

5
+

1

5

)
+ · · ·

= 1,

whose sums are straightforward to discover.

This project will introduce you to work of Jakob Bernoulli (1655–1705), who, in a time before

the full development of the theory of convergent series, discovered methods for determining the sums

of a wide variety of infinite series beyond the few types listed above. Since producing the sum of a

series is a guarantee of its convergence, what Bernoulli offered us is a straightforward and accessible

method for evaluating sums of these convergent series, providing a very satisfying result—a series

which converges because we know its sum, as compared with a series which we know converges

although its sum is largely a mystery to us.

2 Jakob Bernoulli’s Tractatus de Seriebus Infinitis

Jakob Bernoulli was born in Basel, Switzerland, into a well-to-do Protestant family, the eldest son

of a town Councillor and Master of the local artist’s guild. Jakob’s father sent him off to university

in Basel to prepare him for a career in theology, but while at school, the young Bernoulli became

enthralled by the exciting developments being made in the seventeenth century in astronomy and

mathematics. He eventually became a leading member of an active community of mathematicians

across Europe working on experimental science and analytic mathematics, and he published fre-

quently in the newly established academic journals of the day. He took a position as Professor of

mathematics in Basel in 1683, and trained his younger brother Johann (1667–1748) in mathematics,

famously becoming his professional rival in later years. Both Bernoulli brothers mastered the new

analytic calculus that was being developed by Gottfried Leibniz (1646–1716) on the Continent and

Isaac Newton (1643–1727) in England, and the Bernoulli brothers were instrumental in helping to

develop its principles.

Over a period of almost twenty years, from the late 1680s to the early 1700s, Jakob Bernoulli wrote

five treatises on the theory of infinite series. These works were collected, combined and published

in the decade after Jakob’s death, as Tractatus de Seriebus Infinitis [A Treatise on Infinite Series]

(1713) [Bernoulli, 1713]. The work was bundled together in the same publication with an even more

influential treatise named Ars Conjectandi [The Art of Conjecturing ], which represented the most

comprehensive work to date in the theory of probability.

In the pages below, we will read a portion of the first part of this treatise on series, which Jakob

Bernoulli wrote in 1689.1 It represented the first systematic treatment of series on their own terms.

In Proposition XIV of the Tractatus, Bernoulli set forward a method for determining the sums of

certain kinds of infinite series by means of a strategic rewriting of their terms.

Before we take up Bernoulli’s work in detail, let’s review first some of the terminology that he

employed, some of which has evolved over the intervening years, and the central ideas regarding

1All translations of selections from Bernoullis Tractatus were prepared by the first author of this project.
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series. Sums of numbers in certain patterns have been investigated since ancient times; indeed,

Greek mathematicians like Archimedes of Syracuse (ca. 287–212 BCE) famously used sums of this

kind to solve problems in geometry like the quadrature of the circle and the parabola.2 These patterns

were identified and studied in the centuries before even Archimedes did his work by mathematicians

in the school attributed to Pythagoras of Elea (6th century, BCE).

Today, we call any ordered list of numbers a1, a2, a3, . . . a sequence. For mathematicians in the

ancient world, a different term, progression, was often favored. And three types of progression were

the primary objects of study:

• an arithmetic (pronounced “ar-ith-met-ik”) progression is a sequence of numbers a1, a2, a3, . . .

such that the difference between any consecutive terms is a fixed constant. That is, for all

n ≥ 1, an+1 − an = c for some fixed c, often called the common difference of the progression.

– The natural numbers, 1, 2, 3, 4, 5, . . . , provide a clear example of an arithmetic sequence.

Here, c = 1.

– The sequence 1, 3, 5, 7, . . . of odd positive integers is also arithmetic. Here, c = 2.

– The sequence 1, 4, 9, 16, 25 . . . of squares is not arithmetic. Notice that 16 − 9 = 7 while

4− 1 = 3, and 7 6= 3, so the sequence has no common difference.

• A geometric progression is a sequence of numbers a1, a2, a3, . . . such that the ratio between any

two consecutive terms is a fixed nonzero constant. That is, for all n ≥ 1, an+1

an
= r for some

fixed r > 0. This value r is often referred to as the common ratio of the sequence.

– The sequence 1, 2, 4, 8, 16, . . . , is an example of a geometric progression. Here, r = 2.

– The sequence 1
3 ,

1
9 ,

1
27 ,

1
81 , . . . , is also geometric. Here, r = 1

3 .

• A harmonic progression is one whose reciprocals form an arithmetic progression.3 That is, for

all n ≥ 1, 1
an+1

− 1
an

= c for some constant value c. The quintessential example of a harmonic

progression is the sequence 1, 12 ,
1
3 ,

1
4 , . . . ; a second example is afforded by the reciprocals of the

positive even numbers: 1
2 ,

1
4 ,

1
6 , . . . .

4

This is by no means an exhaustive list of all the kinds of progressions known to the ancients, and to

Jakob Bernoulli in 1689, when he began his systematic study of these objects. In the pages below,

you will see how Bernoulli described more of these types of number sequences.

An expression of the form a1 +a2 +a3 + · · · which adds together numbers in an infinite sequence

is what we call an infinite series. Of course, we learned from an early age that adding together

finitely many numbers always produces a sum, but what would it mean to say that an infinite series

had a (finite) sum? When an infinite series sums to a finite value, we say that the series converges,

and when this is impossible, we say it diverges. Indeed, the truly fascinating thing about infinite

series is that many are such that we can logically and definitively assign them finite sums!

2Quadrature is an old term derived from Latin used to denote the determination of areas.
3An early application of mathematics to music theory was known to disciples of Pythagoras in the 5th century

BCE. They understood that plucked strings of the same material but of lengths in the ratio of 1 : 2
3

: 1
2

made a
pleasing harmonic sound together. Since the reciprocals of these numbers—1, 3

2
and 2, respectively—were in arithmetic

progression, they called any sequence of numbers with reciprocals in arithmetic progression a harmonic progression.
4The reader should be alerted that while arithmetic and geometric progressions will be found in Bernoulli’s work be-

low, we will not see a harmonic progression (although he did consider harmonic progressions elsewhere in his Tractatus);
we include this definition here for the sake of providing a full picture of the landscape in which Bernoulli worked.
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Task 2 Consult your favorite reference work or calculus textbook for the answer to this ques-

tion; what does it really mean to say that we can “assign an infinite series a finite

sum”? In other words, what is the formal definition of a convergent series?5

3 On Progressions and Figurate Numbers

In the early pages of his Tractatus, after stating some simple axioms to govern the behavior of the

quantities which will be involved in the series he studied,6 Bernoulli discussed what it meant for a

sequence of numbers to continue without end to infinity. He then turned his attention to the first

type of infinite series.

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

VIII. To find the sum S of any geometric progression A,B,C,D,E. . . .

Corollary If a decreasing geometric progression continues to infinitely many terms, then

the final term vanishes . . . and the sum of all [terms] equals A2

A−B ; whence, moreover, it is

made clear by this stipulation that infinitely many terms can produce a finite sum.

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

Task 3 Bernoulli uses the term “progression” here, a common synonym for sequence. What

conditions must be satisfied by the (positive) numbers A,B,C,D,E, . . . , if this se-

quence is to be a geometric progression? (Hint: Let r = B
A .)

Task 4 We know that the exact value of a geometric series

a+ ar + ar2 + ar3 + · · ·

is given by
a

1− r
,

provided the ratio r satisfies the inequality |r| < 1.

(a) Use the formula above to determine the exact value of the geometric series

1 +
1

7
+

1

49
+

1

343
+ · · ·+ 1

7n
+ · · ·

5This standard definition is largely credited to Augustin-Louis Cauchy (1789–1857) and Niels Henrik Abel (1802–
1829); other different formulations came later in the nineteenth and twentieth centuries. but none of these notions was
established until more than 100 years after Bernoulli wrote the treatise we will consider here!

6Bernoulli called these quantities “magnitudes,” evoking the terminology found in the classical Elements of Euclid
(ca. 300 BCE), a paradigm of the kind of systematic and rigorous theoretical approach that Bernoulli attempted to
reproduce in his treatise on series.
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(b) Determine the exact value of this geometric series:

5 +
10

3
+

20

9
+

40

27
+ · · · .

(c) Explain why the geometric series

1 +
10

9
+

102

92
+

103

93
+ · · ·

does not converge.

(d) In the text above, Bernoulli gave the formula A2

A−B for “the sum S of any geometric

progression”. Show that his formula agrees with the one given at the beginning

of this Task.

Task 5 What do you think Bernoulli meant in the excerpt above by “the final term” of a

sequence that “continues to infinitely many terms”? And why did he say that it “van-

ishes”?

Before we look further into Bernoulli’s work on infinite series, we next note his consideration of

other “progressions” of numbers, of interest to him and his contemporaries because of their historical

importance to mathematicians, dating back to the ancient Greeks. These sequences of positive

integers, called figurate numbers, are the subject of the next portion of text we will study.

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

XIV. To find the sum of an infinite series of fractions whose denominators grow how-

soever by a geometric progression, and whose numerators proceed in like manner as the

natural numbers 1, 2, 3, 4, etc., or triangular numbers 1, 3, 6, 10, etc., or pyramidal numbers

1, 4, 10, 20, etc., or in like manner as the squares 1, 4, 9, 16, etc., or cubes 1, 8, 27, 64, etc., or

their equimultiples.

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

By longstanding tradition dating back to the Greeks, mathematicians viewed the sequences that

Bernoulli presented here in terms of very simple figures of increasing dimensions. As a starting point,

the natural numbers 1, 2, 3, 4, . . . counted the dots in an (indefinitely) extendable pattern of figures

consisting of one-dimensional lines of points:

Other simple geometric patterns lead to different sequences of numbers. The tasks below will in-

troduce us to the classical sequences that Bernoulli mentioned in the passage above, so they merit

careful consideration.
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Task 6 Consider the following triangular arrays of dots.

Counting the dots in each of these clusters, we obtain the sequence

1, 3, 6, 10, 15, . . . .

(a) Copy down the first five terms of this sequence in a horizontal row. Then, just

underneath and between consecutive terms in this row, write a new row which

contains their “first differences”: 3 − 1, 6 − 3, 10 − 6, and so on. What is the

well-known sequence that is represented by these first differences? (Bernoulli ref-

erenced this sequence in his comments above.)

(b) Assuming that this pattern of first differences continues indefinitely, what must

be the next three numbers in this sequence after 15?

(c) The arrays pictured above suggest another simple pattern for the numbers in this

sequence of triangular numbers:

T1 = 1 = 1

T2 = 3 = 1 + 2

T3 = 6 = 1 + 2 + 3

T4 = 10 = 1 + 2 + 3 + 4

T5 = 15 = 1 + 2 + 3 + 4 + 5

...

In line with this pattern, the tenth triangular number can be identified as

T10 = 55 = 1 + 2 + 3 + · · ·+ 10.

Write a similar expression for the nth triangular number Tn.

Task 7 Bernoulli next mentioned the sequence he called the pyramidal numbers, by which

he meant the sequence that counts the following arrays of dots, one that raises the

geometric dimension yet again:

6



Counting the dots in each of these clusters, we obtain the sequence

1, 4, 10, 20, 35, . . . .

(a) Copy down the first five terms of this sequence of pyramidal numbers in a hor-

izontal row. Then, just underneath and between consecutive terms in this row,

write a new row which contains their “first differences”: 4 − 1, 10 − 4, 20 − 10,

and so on. What sequence do these first differences represent?

(b) Assuming that the pattern of first differences continues indefinitely, what must

be the next three pyramidal numbers in the sequence after 35?

Task 8 Following the pattern of Tasks 6 and 7, we now consider the construction of a new

sequence using the pyramidal numbers as first differences.

(a) Start with the number 1, and add to this the pyramidal number 4.

1 + 4 = 5

Then, add to this 5 the next pyramidal number, which is 10:

5 + 10 = 15

We now have the start of a new sequence, 1, 5, 15, . . . built up by starting with 1

and using the pyramidal numbers as first differences. Bernoulli and his contem-

poraries called this the sequence of pyramido-pyramidal numbers.

(b) Assuming this pattern of first differences continues (using the pyramidal num-

bers as the first differences), what must be the next three pyramido-pyramidal

numbers after 15?

(c) Note that the nth pyramidal number is the sum of the first n triangular numbers;

this can be visualized by stacking up the first n triangular numbers to build the

nth pyramidal number. Describe the challenges of attempting a similar procedure

to visualize the nth pyramido-pyramidal number in terms of pyramidal numbers.

7



The observant reader may notice that the sequences we have identified above:

the natural numbers 1, 2, 3, 4, 5, . . . ;

the triangular numbers 1, 3, 6, 10, 15, . . . ;

the pyramidal numbers 1, 4, 10, 20, 35, . . . ; and

the pyramido-pyramidal numbers 1, 5, 15, 35, 70, . . . ;

can all be found as consecutive diagonals within Pascal’s triangle:

. . . . . . . . . . . . . . . . . .

1 7 21 35 35 21 7 1

1 6 15 20 15 6 1

1 5 10 10 5 1

1 4 6 4 1

1 3 3 1

1 2 1

1 1

1

This well-known array, in which each entry is the sum of the two just above it, has many applications,

but perhaps the best known is its use in providing the values of the coefficients in the expansion of

powers of a binomial sum like x+ y.7 For instance, the entries in row 5 of the array (where the top

of the triangle is row 0) are found in the expansion

(x+ y)5 = x5 + 5x4y + 10x3y2 + 10x2y3 + 5xy4 + y5.

In the passage we read above from Proposition XIV of Bernoulli’s Tractatus, in addition to

the figurate number sequences, he included the sequences of squares and cubes. These were also

understood as sequences of geometrical arrays of dots.

Task 9 Consider the following square arrays of dots.

Counting the dots in each of these clusters, we obtain the sequence

1, 4, 9, 16, 25, . . . .

7To say any more about this here would take us too far afield of our work with infinite series in this project. For
more on Pascal’s triangle and its many amazing mathematical properties, see the project “Figurate Numbers and Sums
of Consecutive Powers: Fermat, Pascal, Bernoulli” by David Pengelley [Pengelley, 2013].
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(a) Copy down the first five terms of this sequence in a horizontal row. Then, just

underneath and between consecutive terms in this row, write a new row which

contains their “first differences”: 4 − 1, 9 − 4, 16 − 9, and so on. What is the

well-known sequence that is represented by these first differences?

(b) Assuming that this pattern of first differences continues indefinitely, what must

be the next three square numbers in the sequence after 25?

(c) Another way to envision the pattern found in part (a) is to realize it in this array

of equations:

1 = 1

4 = 1 + a

9 = 1 + a+ b

16 = 1 + a+ b+ c

25 = 1 + a+ b+ c+ d

Replace the letters a, b, c, d above with the natural numbers that realize the pat-

tern. Then complete this sentence to describe the general pattern: the square

number n2 is the sum of .

We note that Bernoulli also mentioned the cubes among the various sequences of figurate num-

bers8 in the passage above. Bernoulli commented that these are the numbers 1, 8, 27, 64, . . . , that is,

the numbers 13, 23, 33, 43, . . . , or more compactly, n3 for n = 1, 2, 3, 4, . . . . These numbers count a

3-dimensional cubical array of dots, with n dots along each edge of the cube, pictured here.

With this brief introduction to figurate numbers in hand, we now consider how Bernoulli worked

to sum certain kinds of series, which according to him, consisted of “fractions whose denominators grow

howsoever by a geometric progression, and whose numerators” are represented as figurate numbers.

4 Bernoulli’s Summation Techniques

In Proposition XIV of his treatise Bernoulli posed the problem of summing certain types of series.

Bernoulli was able to determine their exact sums by a method wherein he “split” the series into a

collection of simpler series, a technique that then allowed him to re-express the original series by

another which was much easier to sum exactly.

8For a more extensive study of figurate numbers, the interested reader may wish to consult Jerry Lodder’s
Primary Source Project “Construction of the Figurate Numbers”, available at the TRIUMPHS website, https:

//digitalcommons.ursinus.edu/.
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4.1 “If the numerators grow as the natural numbers”

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

XIV. To find the sum of an infinite series of fractions whose denominators grow howsoever

by a geometric progression, . . .

1. If the numerators grow as the natural numbers:

The sum may be found by resolving the proposed series A into infinitely many series

B,C,D,E, etc., each of which proceeds geometrically, whose sums are found, and (if you

exclude the first) constitute . . . a new geometric progression F , whose sum is found in the

same way as the others by Corollary VIII. Showing the work in detail:

A = a
b+a+c

bd +a+2c
bd2

+a+3c
bd3

+ · · · = B + C +D + E + · · ·

B = a
b+ a

bd + a
bd2

+ a
bd3

+ · · · = ad
bd−b

C = . + c
bd + c

bd2
+ c

bd3
+ · · · = c

bd−b

F = cd

b(d−1)2 , which when

added to the first term
ad

bd−b produces the total

of the proposed series A

D = . . . . . . c
bd2

+ c
bd3

+ · · · = c
bd2−bd

E = . . . . . . . . . . . . c
bd3

+ · · · = c
bd3−bd2

. . . = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ad

b(d−1) + cd
b(d−1)2 = the sum.

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

Let’s begin to make sense of what Bernoulli did here by considering a specific example of the

series A.

Task 10 (a) Using a = 0, b = 5, c = 1, and d = 3, write the first four nonzero terms of A.

(b) What is the general term of series A using the values for a, b, c, and d specified

above? What convergence test would you use to determine whether this series A

converges? Use the test to determine whether A converges or diverges.

(c) Given that a = 0, what does the sum B (which appears in Bernoulli’s table

above) equal?

Task 11 (a) In words, describe what Bernoulli did to build the individual terms of the series

C,D,E, . . . using the original series A.

(b) Write the first four terms of C using the values a, b, c, and d that were used above.

What kind of series is C? Find the exact value of C using a known formula for this

type of series. Does your answer for C match what you get by using Bernoulli’s

general formula for C which appears in the table above?

(c) Write the first four terms of D using the values a, b, c, and d that were used above.

What kind of series is D? Find the exact value of D using a known formula for this

type of series. Does your answer for D match what you get by using Bernoulli’s

general formula for D which appears in the table above?
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(d) Write out the first four terms of E using the values a, b, c, and d that were used

above. How do the terms of this series differ from those in series C and D above?

How are they similar? What is the value of the sum of series E?

(e) Do you see a pattern in the values of the series C,D, and E? What do you think

the value of the next sum would be?

(f) Given the pattern that you just observed, what kind of series is C+D+E+ . . .?

Given this, compute the sum that Bernoulli labeled F = C +D + E + . . . .

(g) Now let’s put everything together. We have determined the values of B and

F = C+D+E+ . . . for the specific values a = 0, b = 5, c = 1, and d = 3. Given

that A = B + F, determine the value of A in this particular case.

Task 12 Now repeat Tasks 10 and 11 using these values: a = 5, b = 7, c = 1, and d = 3.

Let’s reflect on what Bernoulli accomplished here. He artfully pulled apart the terms of the series

A to create a list of other geometric series, thereby decomposing the original into component parts,

each of which is a series whose sum was straightforward to evaluate. It just so happened that the

resulting set of sums formed another series whose sum was straightforward to find.9 Et voilá ! He

now had a formula that itself applies to an infinite number of different series (as we vary the values

of the parameters a, b, c, d):

A =
a

b
+
a+ c

bd
+
a+ 2c

bd2
+
a+ 3c

bd3
+ · · · = ad

b(d− 1)
+

cd

b(d− 1)2
. (1)

In the case where a = 0, this reduces to the even simpler, but still useful, formula

A0 =
c

bd
+

2c

bd2
+

3c

bd3
+ · · · = cd

b(d− 1)2
. (2)

4.2 “If the numerators are as the triangular numbers”

Bernoulli was not satisfied with only one successful summation. He recognized that this splitting

and recombining of terms could apply to sum other series.

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

2. If the numerators are as the triangular numbers:

The given series G is resolvable into another H, whose numerators are as in the preceding

hypothesis, as such:

9In Bernoulli’s day, it was not yet recognized that problems might arise when series were manipulated by blithely
reordering or rearranging their terms. In later centuries mathematicians would be led to investigate which properties
of series allowed for such rearrangements without affecting their convergence or the values of their sums. They were
ultimately led to the notion of absolute convergence (which we will not investigate here), now a standard topic in
mathematical analysis. Luckily for Bernoulli, the series he worked with here were already absolutely convergent, and
thus his rearrangements never led him astray!
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G = c
b+3c

bd+ 6c
bd2

+10c
bd3

+ · · ·
c
b+ c

bd+ c
bd2

+ c
bd3

+ · · ·= cd
bd−b


H = cd3

b(d−1)3 , since this

series is to the preceding
c
bd + 2c

bd2
+ 3c

bd3
+ · · · =

cd
b(d−1)2 as d2 is to d− 1.

+2c
bd+ 2c

bd2
+ 2c

bd3
+ · · ·= 2c

bd−b
+ 3c

bd2
+ 3c

bd3
+ · · ·= 3c

bd2−bd
+ 4c

bd3
+ · · ·= 4c

bd3−bd2
+ · · ·= · · ·

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

Bernoulli seemed less interested here in paragraph 2 in explaining himself as carefully as he did

in paragraph 1 above. Still, the method used to sum the series G is essentially of the same type

as the one employed earlier: a splitting of the individual terms to lay out a sequence of geometric

series whose sums themselves formed a new series which itself could be summed because it possessed

a familiar structure. Let us now see how this was done.

Task 13 Here is the splitting that Bernoulli performed in paragraph 2 on the initial series G:

G = c
b+3c

bd+ 6c
bd2

+10c
bd3

+ · · ·

G1 = c
b+ c

bd+ c
bd2

+ c
bd3

+ · · ·= cd
bd−b

G2 = +2c
bd+ 2c

bd2
+ 2c

bd3
+ · · ·= 2c

bd−b
G3 = + 3c

bd2
+ 3c

bd3
+ · · ·= 3c

bd2−bd
G4 = + 4c

bd3
+ · · ·= 4c

bd3−bd2
... =

... =
...

We have labeled the individual component series G1, G2, . . . , noting that the splitting

required infinitely many new series, each beginning one term further forward in the

array than the one above it.

(a) Bernoulli could have split series G into component parts in a number of different

ways. What pattern did he exploit to create the different subscripted series G1

and G2 and G3 and . . . ? For instance, why was the term 6c
bd2

split into the three

terms c
bd2
, 2c
bd2
, 3c
bd2

? Similarly, why was the term 10c
bd3

split into the four terms
c

bd3
, 2c
bd3
, 3c
bd3
, 4c
bd3

? As you formulate your answer, consider the work you did in

Task 6, where we laid out the sequence of triangular numbers.

(b) Are each of the series G1, G2, . . . geometric? How can you tell?

(c) Verify the sums that Bernoulli gave for the series G1, G2, G3.

(d) Recall that in paragraph 2, Bernoulli defined the series H to be

H = G1 +G2 +G3 +G4 + · · · = cd

bd− b
+

2c

bd− b
+

3c

bd2 − bd
+

4c

bd3 − bd2
+ · · ·

and concluded that paragraph by remarking that “this series is to the preceding
c
bd + 2c

bd2
+ 3c

bd3
+ · · · as d2 is to d − 1.” Compare the series identified here by

12



Bernoulli, c
bd + 2c

bd2
+ 3c

bd3
+ · · · , which is also equal to the series we called A0 in

equation (2) above, with this series for H; show that the comparison leads to the

proportion
H

A0
=

d2

d− 1
.

(e) Now use the known closed formula (2) for the sum of A0 to conclude (as did

Bernoulli) that

G = H =
cd3

b(d− 1)3
. (3)

Task 14 Identify the values of the parameters that Bernoulli called b, c and d in his expression

for the series G which lead to the series

1

5
+

3

10
+

6

20
+

10

40
+ · · · .

Then use Bernoulli’s results in paragraph 2 as formulated in Task 13(e) to find the

exact value of this series.

4.3 “If the numerators are as the pyramidal numbers”

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

3. If the numerators are as the pyramidal numbers:

The series may be resolved into another whose numerators grow as the triangular numbers,

which has a ratio to the preceding series as d to d− 1; whence its sum is found to be = cd4

b(d−1)4 .

More generally, if the numerators of the given series are as the figurate numbers of any degree,

their sum will have [a ratio] to the sum of a similar series with the previous degree as d is to

d− 1; whence the sum of all remaining terms is quite easily found.

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

The reader has no doubt noticed that in paragraph 3, Bernoulli relied on carrying out a pattern

of analysis which he had established in paragraphs 1 and 2, and which he then expected his readers

to follow here, providing little in the way of details himself. The object of concern in paragraph 3 is

therefore a series similar in form to series

G =
c

b
+

3c

bd
+

6c

bd2
+

10c

bd3
+ · · ·

from paragraph 2, but modified so that “the numerators are as the pyramidal numbers.” (Recall what

this sequence is; see Task 7.) In other words, Bernoulli devoted paragraph 3 to determining the sum

of the series
c

b
+

4c

bd
+

10c

bd2
+

20c

bd3
+ · · · .

13



To carry forward Bernoulli’s own alphabetical conventions, we will label this series I. Let us turn

our attention now to figuring out how Bernoulli was able to determine that “its sum is found to be

= cd4

b(d−1)4 .”

Task 15 We mimic Bernoulli’s analysis of the series G to sum the series I by decomposing it

into an infinite sequence of geometric series.

(a) Keeping in mind that the pyramidal numbers are generated as cumulative sums

of the triangular numbers, that is,

1 = 1, 4 = 1 + 3, 10 = 1 + 3 + 6, . . . ,

write out the array given below and fill in the missing (underlined) terms in the

decomposition of I into the series I1, I2, I3, I4. (Note that the first term of the

series In has the nth triangular number in its numerator.)

I = c
b+ 4c

bd + 10c
bd2

+ 20c
bd3

+ · · ·

I1 = c
b+ + + + · · ·= �

I2 = + 3c
bd + + + · · ·= �

I3 = + 6c
bd2

+ + · · ·= �

I4 = + 10c
bd3

+ · · ·= �
... =

... =
...

Then fill in the (boxed) expressions on the right by determining the exact values

of each of the (geometric) sums I1, I2, I3, and I4.

(b) Now let J be the series whose terms are the sums of the series I1, I2, I3, I4, . . . ,

that is,

J = I1 + I2 + I3 + I4 + · · ·

Using your work in (a) above, write out J as an infinite series of terms, and give

the details to verify that

J =
d

d− 1

(
c

b
+

3c

bd
+

6c

bd2
+

10c

bd3
+ · · ·

)
.

(c) In light of your work in (b) above and in Task 13, explain what Bernoulli meant

when he said that series I “may be resolved into another whose numerators grow

as the triangular numbers, which has a ratio to the preceding series as d to d− 1.”

In particular, to what did he refer as “the preceding series”?

(d) Finally, verify Bernoulli’s claim that “its sum is found to be = cd4

b(d−1)4 .” Of course,

you must also identify which series he was referring to here!

Task 16 Using Bernoulli’s results in his paragraph 3, find the exact value of the series

1

5
+

4

10
+

10

20
+

20

40
+ . . .
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As we have seen, Bernoulli successfully discovered formulas for the sums of a number of “infinite

series of fractions whose denominators grow howsoever by a geometric progression” and whose numera-

tors “grow as the natural numbers” 1, 2, 3, . . . (par. 1); “as the triangular numbers” 1, 3, 6, . . . (par. 2);

and “as the pyramidal numbers” 1, 4, 10, . . . (par. 3). But at the end of paragraph 3, he made a

final sweeping claim that indicated his awareness that this pattern of discovery could be indefinitely

extended:

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

More generally, if the numerators of the given series are as the figurate numbers of any

degree, their sum will have [a ratio] to the sum of the similar series with the previous degree

as d is to d− 1; whence the sum of all remaining terms is quite easily found.

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

Bernoulli did not go on to explore the next series in this pattern, in which “the numerators

of the given series are as the figurate numbers of any degree”, namely, the series whose numerators

contain the pyramido-pyramidal numbers. This may be because visualizing the pyramido-pyramidal

numbers required four-dimensional representations, a serious challenge for a geometer (recall Task

8(c)). However, there is nothing barring us from exploring this series.

Task 17 (a) When we set a = 0 in the series A from paragraph 1, and multiply through by

d, we get the first series A∗ below. Copy down this series. Then, as shown here,

write out the similar series G from paragraph 2 underneath A∗, followed by series

I from paragraph 3.

A∗ =
c

b
+

2c

bd
+

3c

bd2
+

4c

bd3
+ · · ·

G =
c

b
+

3c

bd
+

6c

bd2
+

10c

bd3
+ · · ·

I =
c

b
+

4c

bd
+

10c

bd2
+

20c

bd3
+ · · ·

What should the next series in this sequence look like? Write it down also, label

it K, and identify the name of the sequence of numbers that appears in the

numerators of its terms. You can recognize it from work we did back in Section

3.

(b) From the work we’ve done above, determine the values of the sums of A∗, G, and

I in terms of b, c, and d. Using these facts, infer what the sum of the series K

“must” be.

(c) Confirm your guess for the formula for K by performing an analysis similar to

the one in Task 15. Now isn’t that satisfying?
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4.4 “If the numerators are as the squares”

Bernoulli next turned his attention to working with series of similar form whose numerators contain

the powers of the natural numbers. In particular, he chose to investigate the series whose numerators

included the squares and cubes, both of which are easily visualized in two or three dimensions,

respectively (see Task 9 and the comment that follows it).

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

4. If the numerators are as the squares:

Series L is resolved into another M , whose numerators are arithmetic progressions, and

are therefore as in the first case:

L = c
b+4c

bd+ 9c
bd2

+16c
bd3

+ · · ·

c
b+ c

bd+ c
bd2

+ c
bd3

+ · · ·= cd
bd−b 

M = cd2

b(d−1)2 + 2cd2

b(d−1)3

= cd3+cd2

b(d−1)3

+3c
bd+ 3c

bd2
+ 3c

bd3
+ · · ·= 3c

bd−b

+ 5c
bd2

+ 5c
bd3

+ · · ·= 5c
bd2−bd

+ 7c
bd3

+ · · ·= 7c
bd3−bd2

+ · · ·= · · ·

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

Task 18 (a) Bernoullli’s array of series in paragraph 4 is reproduced below.

L = c
b+4c

bd+ 9c
bd2

+16c
bd3

+ + · · ·

L1 = c
b+ c

bd+ c
bd2

+ c
bd3

+ + · · ·= �

L2 = +3c
bd+ 3c

bd2
+ 3c

bd3
+ + · · ·= �

L3 = + 5c
bd2

+ 5c
bd3

+ + · · ·= �

L4 = + 7c
bd3

+ + · · ·= �

L5 = + + · · ·= �
... =

... =
...

Copy down this array and fill in the blanks to identify the fifth term in each of

the series of the array. Task 8 may help you to see why Bernoulli decomposed L

into these given series.

(b) Now determine formulas for the sums of the geometric series L1, L2, L3, L4, L5,

providing appropriate expressions to fill in the boxes above. Do these formulas

coincide with the expressions given by Bernoulli in his array in paragraph 4?

(c) In paragraph 4, Bernoulli defined the series
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M= L1 + L2 + L3 + L4 + · · ·

= cd
bd−b+ 3c

bd−b+ 5c
bd2−bd+ 7c

bd3−bd2 + · · ·

He then performed a second decomposition in order to determine a formula for

M :

M = cd
bd−b+ c

bd−b+ c
bd2−bd+ c

bd3−bd2 + · · ·

+ � c
bd−b+ � c

bd2−bd+ � c
bd3−bd2 + · · ·

Copy this last equation, filling in the missing numbers in each of the boxes to

complete Bernoulli’s decomposition of M into two series, which we label M1

(terms without a �) and M2 (terms with a �).

(d) Verify that the series M1 is geometric and give an expression for its sum. Then

verify that M2 is a multiple of the series A∗ (see Task 17), a series “as in the first

case”, i.e., as determined in paragraph 1; use this fact to find a simple expression

for M2. Combine these to get the two-term formula for M that Bernoulli obtained

in paragraph 4, then simplify algebraically to get the one-term formula he gave

as the final form for M .

4.5 “If the numerators are as the cubes”

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

5. If the numerators are as the cubes:

The series may be resolved into another whose numerators are six times the triangular

numbers plus a unit; whence its sum is found like that in the second case, cd2

b(d−1)2 + 6cd3

b(d−1)4 =

cd4+4cd3+cd2

b(d−1)4 .

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

Bernoulli was extremely terse in his presentation of this last result, since the analysis that led him

to it was entirely similar to the work he performed in paragraph 4. We can follow along similarly,

modeling our steps with what we did in Task 18.

Task 19 (a) Bernoulli was clearly interested in the series

N =
c

b
+

8c

bd
+

27c

bd2
+

64c

bd3
+ · · · ,

which the reader should note is identical to L (from paragraph 4), except that

the coefficients which are the perfect squares in L are now the perfect cubes in

N . Our analysis will mimic that of Task 18, beginning with the array below.
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N = c
b+ 8c

bd + 27c
bd2

+ 64c
bd3

+ + · · ·

N1 = c
b+ + + + + · · ·=©

N2 = + 7c
bd + + + + · · ·=©

N3 = + 19c
bd2

+ + + · · ·=©

N4 = + 37c
bd3

+ + · · ·=©

N5 = + 61c
bd4

+ · · ·=©
... =

... =
...

Copy down this array and fill in the blanks to identify the missing terms in each

of the series of the array. Then fill in the circled expressions on the right by

determining the exact values of each of the (geometric) sums N1, N2, N3, N4, and

N5.

(b) Next, we consider the “recomposed” series

O= N1 + N2 + N3 + N4 + N5 + · · ·

= �cd
b(d−1)+

�c
b(d−1)+

�c
bd(d−1)+

�c
bd2(d−1)+

�c
bd3(d−1)+ · · ·

(We use boxes to represent the coefficients of O here so as not to spoil the reader’s

satisfaction of working them out for themselves!) In paragraph 5, Bernoulli men-

tioned that the newly “resolved” series we are now calling O has coefficients which

“are six times the triangular numbers plus a unit.” In light of the values of the boxed

coefficients, what did Bernoulli mean by this?

(c) Mimicking the analysis from paragraph 4, we decompose O once more into two

series, exploiting what Bernoulli realized about the form of its coefficients:

O = cd
b(d−1)+

c
b(d−1) + c

bd(d−1)+
c

bd2(d−1)+ · · ·

+6
(
4c

b(d−1) + 4c
bd(d−1)+

4c
bd2(d−1)+ · · ·

)
Copy down this last equation, filling in the missing numbers which appear above

as little triangles, to complete the decomposition of O into two other series O1

(terms outside the parentheses) and O2 (terms within the parentheses).

(d) Verify that the series O1 is geometric and give an expression for its sum. Then

verify that O2 is a multiple of the series G (see paragraph 2, Task 13 and Task

17); use this fact to find a simple expression for the sum of O2. Combine these to

obtain the two-term formula forO that Bernoulli obtained at the end of paragraph

5. Finally, collect these two terms into one to get the final expression he found

for O.

4.6 Taking Stock

Bernoulli summarized his results in the next brief section of text by presenting some examples of his

results.
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∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

In this vein, let examples be provided by the following series, whose numerators are the

Natural nos. 1
2 + 2

4 + 3
8 + 4

16+ 5
32 + · · · = 2

Triangular nos. 1
2 + 3

4 + 6
8 +10

16+15
32 + · · · = 4

Pyramidal nos. 1
2 + 4

4 + 10
8 +20

16+35
32 + · · · = 8

Square nos. 1
2 + 4

4 + 9
8 +16

16+25
32 + · · · = 6

Cubic nos. 1
2 + 8

4 + 27
8 +64

16+125
32 + · · ·= 26

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

Task 20 (a) Identify the first three series given here by Bernoulli (labeled as examples with

natural numbers, triangular numbers and pyramidal numbers in the numerators

of their terms) with the appropriate series from Task 17. Give the values of the

parameters b, c, and d in each of these three series. Then, using these values and

Bernoulli’s results, verify the sums that Bernoulli offered above.

(b) Identify the last two series given here by Bernoulli (labeled as examples with

square numbers and cubic numbers in the numerators of their terms) with the

appropriate series in paragraphs 4 and 5. Give the values of the parameters b, c,

and d in each of these series. Using these values and Bernoulli’s results, verify

the two sums for these series given by Bernoulli.

Task 21 Using the various results of Bernoulli that we have considered above, find exact values

of the sums of the following series:

(a)
2

1
+

6

7
+

12

49
+

20

343
+ . . .

(b)
1

2
+

8

10
+

27

50
+

64

250
+ . . . [Back where we began in Task 1: thanks, M. Bernoulli!]

(c)
2

5
+

16

25
+

72

125
+

256

625
+ . . . [Hint: take d = 5

2 .]

(d)
3

2
+ 1 +

5

12
+

5

36
+ . . . [Hint: take d = 6.]

5 The Obvious Pattern is the Right One!

In this section, our goal is to extend a pattern that Bernoulli mentioned in the final excerpt we

encountered in Section 4.6. The first three examples in his list were the following:
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∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

Natural nos. 1
2 + 2

4 + 3
8 + 4

16+ 5
32 + · · ·= 2

Triangular nos. 1
2 + 3

4 + 6
8 +10

16+15
32 + · · ·= 4

Pyramidal nos. 1
2 + 4

4 + 10
8 +20

16+35
32 + · · ·= 8

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

Task 22 Recall from Section 3 that the figurate number sequences given by the natural num-

bers, triangular numbers and pyramidal numbers establish the pattern in that analysis

which continues with the sequence of pyramido-pyramidal numbers (Task 8). Use this

information to write down the next series in the pattern of series results quoted here

by Bernoulli. What do you expect is the sum of this series?

Might it be possible to naturally extend this list so that the sums in question continue the pattern

of summing to powers of 2? The answer to this question is a resounding YES!

To do this, we begin by setting some notation for the d-dimensional pyramidal numbers in ques-

tion. Let fd,n be the nth d-dimensional number in question; that is,

f1,1 = 1 f1,2 = 2 f1,3 = 3 f1,4 = 4 · · · (natural numbers)

f2,1 = 1 f2,2 = 3 f2,3 = 6 f2,4 = 10 · · · (triangular numbers)

f3,1 = 1 f3,2 = 4 f3,3 = 10 f3,4 = 20 · · · (pyramidal numbers)

f4,1 = 1 f4,2 = 5 f4,3 = 15 f4,4 = 35 · · · (pyramido-pyramidal numbers)
...

...
...

...
. . .

The key property we need about these sequences, and which we have identified back in Section

3, is that the nth term in each of these sequences is the sum of the first n terms in the sequence

one dimension lower. For instance, f3,4 = 20 is the sum of the first four entries in row d = 2; i.e.,

20 = 1 + 3 + 6 + 10. More generally then, the fd,n satisfy the following important identity10

fd+1,n = fd,1 + fd,2 + fd,3 + · · ·+ fd,n. (4)

The new notation we have built now allows us to recast the results that Bernoulli quoted in the

excerpt above:

f1,1
2 +

f1,2
4 +

f1,3
8 +

f1,4
16 +

f1,5
32 + · · ·= 2,

f2,1
2 +

f2,2
4 +

f2,3
8 +

f2,4
16 +

f2,5
32 + · · ·= 4,

f3,1
2 +

f3,2
4 +

f3,3
8 +

f3,4
16 +

f3,5
32 + · · ·= 8.

10The perceptive reader will notice that the numbers in the fd,n array form a subset of the familiar Pascal’s triangle.
Moreover, the result in equation (4) is sometimes called the “hockey stick” theorem, evoked by the positions of the
numbers that sum to give the later entries.
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This then leads us to the following general result.

Theorem: For all d ≥ 1,

fd,1
2

+
fd,2
4

+
fd,3
8

+
fd,4
16

+
fd,5
32

+ · · · = 2d.

Proof: The result is clear for d = 1, 2, 3 based on the work that Bernoulli (and the readers of this

project) has done above.

To complete the argument, we need to be able to verify the next infinitely many similar formulas!

However, all we really need do is to show how the truth of the d-dimensional case implies the truth

of the (d+ 1)-dimensional case. (In essence, this is a proof by mathematical induction!) In order to

do this, use Bernoulli’s series “splitting” approach to verify the formula works at dimension d+ 1.

Consider the following array, modeled on the work of Bernoulli in the source texts we have already

studied:

fd+1,1

2 +
fd+1,2

4 +
fd+1,3

8 +
fd+1,4

16 +
fd+1,5

32 + · · ·

fd,1
2 +

fd,1
4 +

fd,1
8 +

fd,1
16 +

fd,1
32 + · · ·

+
fd,2
4 +

fd,2
8 +

fd,2
16 +

fd,2
32 + · · ·

+
fd,3
8 +

fd,3
16 +

fd,3
32 + · · ·

+
fd,4
16 +

fd,4
32 + · · ·

+
fd,5
32 + · · ·

...

Task 23 (a) What kind of series is the series listed in row one of the array above,

fd,1
2

+
fd,1
4

+
fd,1
8

+
fd,1
16

+
fd,1
32

+ · · · ?

Use this fact to determine its sum, noting that the answer will depend on fd,1.

(b) What can you say about the type of the series that appear in rows two through

five of the array above? Based on this recognition, determine each of their sums.

(c) The (d+ 1)-dimensional series at the top of the array,

fd+1,1

2
+
fd+1,2

4
+
fd+1,3

8
+
fd+1,4

16
+
fd+1,5

32
+ · · · ,

can now be rewritten in a new way as a series whose terms are the sums of the

series we have considered in parts (a) and (b) above. Do this.

(d) Verify now that

fd+1,1

2
+
fd+1,2

4
+
fd+1,3

8
+
fd+1,4

16
+
fd+1,5

32
+· · · = 2

(
fd,1
2

+
fd,2
4

+
fd,3
8

+
fd,4
16

+
fd,5
32

+ . . .

)
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This equation states, in essence, the induction step of the argument we are making

to formulate our proof of the theorem above.

(e) Thus, if we assume that we know the value of the d-dimensional sum in paren-

theses in part (d), argue that

fd+1,1

2
+
fd+1,2

4
+
fd+1,3

8
+
fd+1,4

16
+
fd+1,5

32
+ · · · = 2d+1.

This completes the proof.

6 A Modern Approach to Bernoulli’s Methods: When the Numer-

ators are Powers of n

Let’s revisit the series that Bernoulli considered in his paragraphs 1, 4, and 5. There, Bernoulli

presented examples of the methods he employed in these paragraphs to find the sums of the following

series:

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

Natural nos. 1
2 + 2

4 + 3
8 + 4

16+ 5
32 + · · · = 2

. . .

Square nos. 1
2 + 4

4 + 9
8 +16

16+25
32 + · · · = 6

Cubic nos. 1
2 + 8

4 + 27
8 +64

16+125
32 + · · ·= 26

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

We verified the last two sums that Bernoulli reported here in Task 20(b) above. Note that all

three of these series have the form

1k

d
+

2k

d2
+

3k

d3
+

4k

d4
+ · · · =

∞∑
n=1

nk

dn

when d = 2 and k = 1 for the first series, k = 2 for the second, and k = 3 for the third.

In what follows, we wish to consider how one might utilize more modern tools to arrive at these

results of Bernoulli (and many more besides). Interestingly enough, these tools, which involve an

understanding of the geometric series, differentiation of power series, and evaluation of power series

at certain values of the variable, are often taught in many calculus courses, so we trust that you,

dear reader, will be able to discover the same results with a little bit of help.

To that end, recall, as was mentioned in Section 2 above, that the exact value of

a+ ax+ ax2 + ax3 + · · ·

is given by
a

1− x
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where a is the initial term of the series and the ratio x of consecutive terms satisfies the inequality

|x| < 1. When a = 1, this yields the classic result

1

1− x
= 1 + x+ x2 + x3 + · · · , (5)

which holds whenever |x| < 1. We can then use well-known rules of differentiation to produce many

new results quickly.

For example, we can differentiate both sides of (5) with respect to x to yield

1

(1− x)2
= 1 + 2x+ 3x2 + 4x3 + · · · .

(Note that the left-hand side of the above simply requires the quotient rule,11 while the right-hand

side is simply generated by applying the power rule to each of the terms in the series.) We then

multiply both sides of this equation by x to yield

x

(1− x)2
= x+ 2x2 + 3x3 + 4x4 + · · · . (6)

Since the steps completed above do not alter the interval of convergence of the power series in (6),

we know that we can now evaluate (6) at any value of x which satisfies |x| < 1 and obtain the sum

of an infinite convergent series.

Task 24 Write out the first five terms of the series in (6) obtained by setting x = 1
2 . Then set

x = 1
2 on the left-hand side of equation (6); what does this give us for the sum of this

series? How does this relate to what Bernoulli stated in the excerpt at the beginning

of this section?

Notice that there’s nothing special about the value x = 1
2 that was used above; we could have

used x = −1
3 or x = 2

7 or any value x, so long as |x| < 1. This simple observation means that we can

now find the exact value of an infinite family of convergent infinite series.

Of course, we could apply the same procedure we just employed to (6): if we differentiate both

sides of (6) with respect to x, and simplify the left-hand side after the quotient rule has been applied,

we arrive at
1 + x

(1− x)3
= 1 + 4x+ 9x2 + 16x3 + · · · ,

and multiplying both sides of this equation by x yields

x(1 + x)

(1− x)3
= x+ 4x2 + 9x3 + 16x4 + · · · . (7)

Task 25 Write out the first five terms of the series in (7) obtained by setting x = 1
2 . Then set

x = 1
2 on the left-hand side of equation (7); what does this give us for the sum of this

11Or, the power rule and chain rule.
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series? How does it relate to what Bernoulli stated in the excerpt at the beginning of

this section?

Task 26 (a) Using equation (6) above, determine the exact value of the series

1

4
+

2

16
+

3

64
+

4

256
+ · · ·

(b) Using equation (7) above, determine the exact value of the series

1

5
+

4

25
+

9

125
+

16

625
+ · · ·

Task 27 In this task, we will employ a similar method to the one used above to sum another

of Bernoulli’s series.

(a) Differentiate both sides of equation (7) with respect to x, simplifying the resulting

equation as much as possible.

(b) Multiply both sides of this new equation by x. Confirm that you obtain the

formula
x(1 + 4x+ x2)

(1− x)4
= x+ 8x2 + 27x3 + 64x4 + · · · . (8)

(c) Use this last equation (part (b)) to find an exact value of the series

1

2
+

8

4
+

27

8
+

64

16
+ · · ·

Does your result agree with one of Bernoulli’s results mentioned earlier?

Let’s briefly take stock of what we have accomplished in producing the formulas (6), (7) and (8).

These series are all of a strikingly similar form:

Fk(x) = 0k + 1kx+ 2kx2 + 3kx3 + 4kx4 + · · · =
∞∑
n=0

nkxn, k ≥ 1. (9)

Indeed, equations (6), (7) and (8) give closed formulas for these series, which we have used to produce

Bernoulli’s sums:

F1(x) =

∞∑
n=0

nxn =
x

(1− x)2

F2(x) =

∞∑
n=0

n2xn =
x(1 + x)

(1− x)3
(10)

F3(x) =

∞∑
n=0

n3xn =
x(1 + 4x+ x2)

(1− x)4
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Task 28 Identify at least three characteristics you observe about the expressions that appear

on the right sides of the equations for Fk(x) in (10). (Resist the temptation to read

on until you have completed this task!)

Did you notice that this sequence of formulas follows the pattern

Fk(x) =
∞∑
n=0

nkxn =
x · Ek−1(x)

(1− x)k+1
, (11)

where Ek−1(x) is a polynomial of degree k − 1? Did you also observe that the coefficients of the

numerator polynomials Ek−1(x) are all positive integers? In fact, these results were identified and

conjectured by the great Leonhard Euler (1707–1783), which he described in his Institutiones calculi

differentialis (1755, Ch. 9, par. 173, pp. 485–486). These polynomials are now called Eulerian

polynomials in his honor. From (10) we know that the first few polynomials in this list are

E0(x) = 1,

E1(x) = 1 + x, (12)

E2(x) = 1 + 4x+ x2,

and we would like to figure out how to determine the rest of them, since they provide us the necessary

tool for summing all series of the form

Fk

(
1

d

)
=

∞∑
n=0

nk

dn
=

1k

d
+

2k

d2
+

3k

d3
+

4k

d4
+ · · · . (13)

Task 29 Repeat the same procedure you used in Task 27, beginning by taking the derivative of

the formula for F3(x) in (10), to find the series representation and closed-form formula

for F4(x) that represents the next in the sequence of equations in (10). Deduce from

this what the cubic polynomial E3(x) is.

The most important feature of the process we used to generate the formulas in (10) and the result

in Task 29 is the differentiation step that led us to find (6) from (5), (7) from (6), (8) from (7), etc.

We found there that

Fk+1(x) = x · F ′k(x) (14)

holds for k = 1, 2, and 3, and clearly this pattern should continue for all nonnegative integer values

of k.

Task 30 Combine formulas (11) and (14); show that this implies

Ek(x) = x(1− x)E′k−1(x) + (1 + kx)Ek−1(x), k ≥ 1. (15)

25



The relationship in (15) will now allow us to work out in detail the coefficients of each of the

polynomials Ek(x). To achieve this goal, let us write out the terms of the polynomial Ek(x) as

follows:

Ek(x) = ek,0 + ek,1x+ · · ·+ ek,k−1x
k−1 + ek,kx

k. (16)

Observe that we use a pair of subscripts here for each coefficient; the first of the subscripts identifies

the index of the polynomial in which it lies and the second identifies the exponent of the term to

which it belongs. Consistent with (12), we must set e0,0 = 1 to obtain E0(x) = 1. It will then be

convenient for us to define values of ek,l to equal 0 whenever l is larger than k or smaller than 0. Our

goal then, accomplished in the task below, will be to construct a recursive formula that will allow

us to compute the coefficients ek,l of Ek(x) in terms of previously computed coefficients for Eulerian

polynomials for smaller values of k.

Task 31 (a) Use equation (16) to write out expansions of Ek−1(x) and then also E′k−1(x).

Keep at least the two highest degree terms and the two lowest degree terms in

these (and all subsequent) expansions; use ellipses (· · · ) to stand for the remaining

terms, as in (16).

(b) Multiply the expansion of E′k−1(x) by x(1−x) = x−x2 and collect like terms in x

to produce the polynomial that represents the first term on the right of equation

(15).

(c) Multiply the expression for Ek−1(x) you found in part (a) by 1 + kx to produce

the polynomial that represents the second term on the right of equation (15).

(d) Add the two polynomial expansions you found in parts (b) and (c) and collect

like terms in x to obtain a polynomial expression for the right side of equation

(15).

(e) This means that the coefficient of the term xl on the left side of equation (16)

must equal the coefficient of xl on the right (for every choice of l). You will notice

that the constant coefficient and the leading coefficient of Ek(x) will have to be

considered carefully as they behave differently from the interior coefficients. Ver-

ify from these comparisons that the following identity expresses all these relations

simultaneously:

ek,l = (k − [l − 1])ek−1,l−1 + (l + 1)ek−1,l , valid for k ≥ 1 and all l, (17)

where again we take ei,j to be 0 whenever l is larger than k or smaller than 0.

The coefficients of the Eulerian polynomials are thus completely determined by the identities

given in (12) together with the recurrence we have found in (17). These coefficients ek,l of these

polynomials are called the Eulerian numbers. They are easily visualized in an array which we call

the Eulerian triangle. (It may remind readers of the much more familiar Pascal triangle.) We list

the (nonzero) values of ek,l row by row as the larger numbers in the table below, starting with row 0,

and within each row by increasing values of l. Because of (12), we know that the Eulerian triangle

begins:
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1(1) (2)4(2) (1)1

1(1) (1)1

1

In rows k > 0 of this array, above and to the left and right of the number ek,l (for l = 1, 2, . . . , k−1)

we write the appropriate multiplier as indicated in (17) as small numbers in parentheses: we place

the value of k− (l− 1) to the left of the Eulerian number and the value of l to the right. This makes

the calculation of the entry ek,l in position l of row k particularly easy to work out; it is the sum of

the number in the row above it and to the left multiplied by the auxiliary superscript in parentheses

at its left with the number in the row above it and to the right multiplied by the auxiliary superscript

at its right. At the beginning and end of each row, the number 1 will always appear, as only a single

1 above it, with multiplier 1, contributes to that value of ek,0 or ek,k.

Task 32 (a) Use (17) to determine the Eulerian numbers in row k = 3 of the Eulerian triangle.

Include the appropriate superscripts to simplify the calculations.

(b) Identify the corresponding Eulerian polynomial E3(x) and compare with your

answer in Task 29.

(c) Finally, use equation (11) to represent F4(x) as a rational function of x, and then

use equation (13) to determine the sum of the series

∞∑
n=0

n4

2n
.

Task 33 (a) Use (17) to determine the Eulerian numbers in rows k = 4 through k = 6 of

the Eulerian triangle, extending the work of Task 32(a). Continue to include the

appropriate auxiliary superscripts in this array.

(b) Use equation (11) to represent F7(x) as a rational function of x, and then use

equation (13) to determine the sum of the series

∞∑
n=0

n7

2n
.

Knowledge of how to compute the Eulerian numbers—now without messy derivative computations!—

allows us, through equations (11) and (13), to determine the values of series of the form

∞∑
n=0

nk

dn

for any choice of integers k ≥ 1 and real number d > 1. What is more, when d is rational, equation

(11) makes it clear that the sum is rational as well!
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7 Conclusion

There is much more in Bernoulli’s Tractatus about the summation of infinite series than we can

discuss here. For instance, in the very next proposition following the one we studied in this project,

he considered this problem:

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

XV. To find the sum of the infinite series of fractions whose numerators make up a series

of equal numbers, and whose denominators are either the triangular numbers or equimultiples

of these.

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

The simplest example of such a series is the sum of the reciprocals of the triangular numbers,

1

1
+

1

3
+

1

6
+

1

10
+

1

15
+ · · · ,

a series which you will almost certainly find presented in any standard textbook introduction to the

theory of infinite series. Rather than give away the answer here, we urge all our readers to look up

the very simple “telescoping” method presented in such books for summing this series.

Later in the Tractatus, Bernoulli considered what turned out be the deceptively thorny problem

of summing the series of the reciprocals of the squares,

1

1
+

1

4
+

1

9
+

1

16
+

1

25
+ · · · .

He himself joined a long line of his contemporaries who tried without success to resolve the exact

sum of this series.

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

. . . it is more difficult than one might expect to seek out this sum, even though we learn

that it is finite by [comparison with] other [series], as [this one] is clearly smaller: If someone

should discover this [sum], communicate with us, for which we would be greatly appreciative,

for it has eluded our diligence up to now.

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

This problem awaited the mathematical skills of the great Leonhard Euler (1707–1783), a fellow

Swiss countryman of Bernoulli, but who was born shortly after Jakob Bernoulli’s death.12 Indeed,

it was the resolution of this problem, in which Euler determined that

1

1
+

1

4
+

1

9
+

1

16
+

1

25
+ · · · = π2

6
,

that essentially launched his career as one of the most prolific and accomplished mathematicians in

history.13

12Jakob Bernoulli died at age 50 in 1705, of tuberculosis, a common (and unfortunately, often fatal) ailment of the
times.

13For more about this series, see the project Euler’s Calculation of the Sum of the Reciprocals of the Squares by
Kenneth M. Monks, available for download at https://blogs.ursinus.edu/triumphs/.
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Notes to Instructors

PSP Content: Topics and Goals

This project is designed to provide students an immersive experience in determining the sums of

infinite series by following the work of Jakob Bernoulli (1655–1705) in his Tractatus de Seriebus

Infinitis. Students typically encounter the theory of infinite series in their second semester course

in calculus, in which the focus is the determination of the convergence of series. While this topic

is vital to the study and use of series in mathematical analysis, it turns out that, with the notable

exceptions of geometric series and telescoping series, whose sums are easy to determine, students

generally conclude this course realizing that very few of the infinite series which they can determine

to be convergent can also be exactly summed. There are a few clear motivations for this approach to

infinite series, characterized by a focus on the convergence tests and approximation methods. One

such motivation is the ease with which many can now calculate the sum of a very large number of

terms of a series thanks to advances in technology (calculators and computers) and the advent of

computer algebra systems. Another motivation is that the idea of approximation is “natural” or

important among calculus students who are intending to complete degrees in a variety of STEM

fields, including a multitude of students in engineering programs.

The transition from a study of convergence tests for infinite series to an introduction to power

series and their representations of the classical analytic functions, can be rather jarring for many

students. Having spent considerable time and energy on the mechanics of determining whether a

series converges, there are few opportunities for them to realize exact values for the series which

they find do converge. One should be drawn to the question of finding the sum of a series once its

convergence is determined, but this question is so little considered. Of course, students must become

familiar with the ideas of series convergence to appreciate the more sophisticated notion of power

series and the associated intervals on which they converge. Even so, we believe that this transition

(from series of numbers to power series) can be strengthened pedagogically by providing ways for

students to see first hand, once they appreciate the difference between convergence and divergence,

how to find the exact sums of certain convergent infinite series before they encounter power series,

and Jakob Bernoulli’s work offers an ideal opportunity to do this.

Bernoulli’s work in his Tractatus demonstrates an accessible approach to determining the exact

sums of certain kinds of infinite series, specifically those of the form

∞∑
n=1

c

bdn−1

(
n+ k − 1

k

)
and

∞∑
n=1

c

bdn−1
nk,

where b 6= 0 and c are arbitrary, |d| > 1 and k = 1, 2 or 3. Section 5 invites the student to explore

cases that correspond to integer values of k > 3 in the first series above. In Section 6, students are led

through a modern approach to determination of the sums of the second type of series. Completing

this PSP should provide the student with a wealth of examples of series whose sums can be found

exactly.

This project is designed as a capstone experience for undergraduate students in their third or

fourth year, particularly for pre-service teachers who may one day be teaching calculus. It is also

suitable as an enrichment experience for any student who has completed the traditional introduction

to the theory of infinite series, or for students in a history of mathematics course as an opportunity

to consider the work of a prominent seventeenth century mathematician at the cusp of the many
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innovations that heralded the “invention” of calculus in this generation.

Another shorter version of this project is also available that substantially abbreviates the treat-

ment of figurate numbers in Section 3 and omits Subsections 4.4–4.5 on Benoulli’s treatment of the

cases where the numerators are square and cubes. That version also replaces Sections 5 and 6 with

a single section that presents a more elementary and streamlined treatment of modern techniques

for summation of series. The shorter version is designed for students of calculus in high schools or in

the first year or two of college-level mathematics, who have recently been introduced to summation

of infinite series. For more about this other version of the PSP, see the section Connections to other

Primary Source Projects below.

Student Prerequisites

Students taking on this project should be familiar with some of the topics found in a typical first year

calculus course including summing geometric series, the notion of convergence versus divergence of a

series, and the more common convergence tests (for instance, Task 1 expects the student to employ

a ratio test to check the convergence of a series). While a comprehensive working knowledge of all

the standard convergence tests is not required or used in this project, the more students are aware

of the contingent nature of convergence, the more satisfying the impact should be of coming to know

methods for computing the sums of series which do converge. In Sections 5 and 6, students are

asked to differentiate the terms of a power series and some rational expressions; we trust that the

typical second-semester calculus student will be comfortable with this. (We recognize that asking

students to differentiate power series could lead to problems with convergence of the resulting series.

However, we believe that discussing the validity of such operations with beginning calculus students

is counterproductive and better left for another time and place!)

The authors of this project have endeavored to minimize the use of summation notation in this

PSP so as to remove as many obstacles as possible for students for whom this symbolism is new

and challenging. We would rather that students focus on grappling with Bernoulli’s clever methods

for manipulating the terms of his series to discover their sums. Of course, this does not prevent

instructors from using—and asking their students to employ—this standard notation for infinite

series.

PSP Design and Task Commentary

The project begins with a simple task designed to alert students that knowing that a series converges

tells one nothing about the sum of that series. This establishes a focus for students’ work with

Bernoulli on the summation (rather than the convergence) of certain infinite series. The types of

series that Bernoulli summed in his treatise are organized by him through the classical language of

arithmetic and geometric progressions, and figurate numbers: natural numbers, triangular numbers,

pyramidal numbers, etc. These objects are defined and explored in Section 3 of the project after

a brief historical account that provides the context for what students will be reading. Instructors

who wish to explore figurate numbers more deeply with their students can do no better than turn

to the PSP Construction of the Figurate Numbers by Jerry Lodder (available for download at the

TRIUMPHS website printed at the end of this project).

Section 4 is the heart of the project. It assists students as they work through Bernoulli’s Propo-

sition XIV, using variations on a technique that splits the given infinite series to be summed into

an infinite number of simpler series (all geometric), each of whose sums then produce a reorganized

representation of the given series whose sum was handled in an earlier paragraph of the treatise! The
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series for which Bernoulli found exact sums in this Proposition are those of the form

∞∑
n=1

pn
qn
,

where qn is a geometric progression (with common ratio having absolute value greater than 1 to

ensure convergence) and

• in subsection 4.1 (and Tasks 10-12), pn is an arithmetic progression;

• in subsection 4.2 (and Tasks 13 and 14), pn is proportional to the sequence of triangular num-

bers;

• in subsection 4.3 (and Tasks 15 and 16), pn is proportional to the sequence of pyramidal num-

bers (with a mention—see Task 17—of how to proceed for higher-order pyramidal numbers).

• in subsection 4.4 (and Task 18), pn is proportional to the sequence of squares; and

• in subsection 4.5 (and Task 19), pn is proportional to the sequence of cubes.

In Section 5, students extend Bernoulli’s techniques to handle series in which pn is proportional

to higher-order pyramidal numbers
(
n+k
k

)
. Task 23 is central to this work. Finally, in Section 6, a

much more modern approach involving the generation of Eulerian polynomials is presented (Tasks

28-33) to allow students to determine the sums of series in which pn is proportional to nk. We

recommend special care be taken with Task 31 as it requires that students be particularly meticulous

in computing various polynomial expansions and equating like terms in order to derive a needed

recursive formula.

Suggestions for Classroom Implementation

We expect that students will be doing preparatory work before each class day, that they will work

(at least some of the time) in small groups with each other in class, and will complete homework

and prepare formal write-ups of their classroom work after class. See the implementation schedule

below for details on our specific suggestions about this.

LATEX code of this entire PSP is available from the author by request to facilitate preparation of

advanced preparation / reading guides or ‘in-class worksheets’ based on tasks included in the project.

The PSP itself can also be modified by instructors as desired to better suit their goals for the course.

Possible Modifications of the PSP

Expect about two weeks of class time to work through this entire project if implemented in a tradi-

tional classroom (see the Sample Implementation Schedule below for detailed suggestions for how to

do this). But there are other ways to navigate the project for a variety of uses.

For instructors with more serious time restrictions, it should be possible to omit Sections 5 and

6 altogether and save a full week of implementation time. This allows students to follow the work of

Bernoulli as presented in his Tractatus, but omits the very elegant and tidy generalizations that are

found the last two sections of the project. Others may choose to omit only Section 6. Know that the

technical demands on students increase through Sections 4, 5, and 6, so more assistance will likely

be needed as students progress through the project.

Additionally, this project may profitably be used for independent study by a single student, or

a small group of students, allowing for a good deal of freedom in working through the material.
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Sections 1–3 may be assigned without much guidance to good students, especially those who may

already be familiar with the idea of figurate numbers (Section 3).

Sample Implementation Schedule (based on a 50-minute class period)

Instructors planning to implement this project in a course that meets twice a week in 75-minute

periods will need to adapt the schedule given here appropriately. Of course, the actual number of

class periods spent on each section naturally depends on the instructor’s goals; what follows is merely

our suggestion.

Day 1

– Ask students to read Sections 1 and 2 of the project, to jot down any questions they may

have as a result of their reading, and to write up Tasks 1 and 2 in advance of the first

meeting.

– Address any questions at the opening of the period. Have a student read aloud the opening

of Section 3, including the first brief excerpt of Bernoulli’s writing. Set students to work

in small groups on Tasks 3–5 (whole class discussions may be needed for students to agree

on how to answer the questions in Task 3 and 5). The remaining discussion of Section

3 concerns the recursive structure of the figurate numbers. Tasks 6–9 should provide

students with enjoyable interactions as they discover how to predict counts of larger and

larger terms in these geometrical sequences. The class period might be brought to a

close with a common reading of the statement of Proposition XIV and the beginning of

paragraph 1 in the primary text that begins Subsection 4.1.

– Have students write up clean solutions for any of the Tasks they have completed by the

end of this day’s class that you believe will serve them well as a written record of their

thinking.

Day 2

– In preparation for Day 2, ask students to read ahead through the end of Subsection 4.1.

It should become clear at a reasonably close reading of this what the technical demands

will be to make sense of Bernoulli’s statements. The instructor should be ready to query

the students about what Bernoulli has attempted to do to sum the series in the opening

text of Subsection 4.1 to get them engaged in the day’s real work.

– Start the period by fielding questions from the students’ earlier work, then ask them what

Bernoulli has done in this portion of text in Subsection 4.1. Set them to work in small

groups on the tasks in this subsection. Repeat with the material in Subsections 4.2 and

4.3. Tasks 11, 13, and 15 are the key tasks, so it is important that classroom time be given

to working through their details, which may require discussion across the classroom. We

recommend ensuring not that students necessarily complete all the pieces of these (and

the other) tasks during the class period as much as that they “get the main idea” about

how Bernoulli has worked out the sum of the series. Strive to push them towards making

their way through Subsection 4.3 by the end of the period; the goal of the day should be

to make sense of Bernoulli’s methods here.
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– Again, decide what you believe is useful for students to formally write up as homework

from this day’s material. Task 17 summarizes the work of the first three subsections of

Section 4 and should be assigned now to help set up what will be needed in Section 4.6.

Day 3

– Familiarity with the mechanical details from Subsections 4.1–4.3 should serve students

well as they work through the rest of Section 4, where the same methods are used, but

with minor alterations. So no further preparations should be needed for this day’s class.

– The goal for the day is to complete Section 4 of the project. Bernoulli’s paragraphs 4 and

5 complete the presentation of his Proposition XIV. The key tasks for today’s work will be

Task 18 in Subsection 4.4, Task 19 in Subsection 4.5, and a summary task in Subsection

4.6, Task 20.

– Instructors should assign for homework from this part of the project what they will find

useful for student assessment.

Day 4

– Section 5 extends the discussion that concludes Bernoulli’s Proposition XIV. Ask students

to prepare for this class by reading the analysis presented at the beginning of Section 5, up

to Task 22. Students who encounter any difficulties should make notes of what the issues

are and bring them to class to resolve with discussion at the beginning of the period.

– After resolving the students’ questions, complete Tasks 22 and 23. Instructors should

realize that the work of Section 5 is more mathematically demanding than what students

faced in earlier sections of the project because it is more theoretical. Students are now

being asked to prove a general statement about an infinite family of sums.

– While there are only two tasks in Section 5, both are of sufficient weight that it would

serve students well to write up their work for both of these. This exercise can also assist

them in thinking through the sophistication of these new theoretical tools.

Day 5

– Section 6 includes a modern approach to extending the results quoted by Bernoulli in

the lines of summary formulas given at the opening of this part of the project, and offers

perhaps the steepest technical challenges. To set the stage for this work, which is laid out

over these last two class days, ask students to read through Section 6 up to and including

the statement of Task 26. Students should try their hands at answering Tasks 24, 25 and

26 in preparation for this day’s class.

– To begin, have students share their progress with Tasks 24–26. This leads very naturally

into work (in small groups) on Task 27, which has been organized in summary in equation

(10). Tasks 28 and 29 are engineered to get students to think about the patterns evidenced

in equation (10); this is vital to help them identify the connection between the forms of

the rational expressions for Fk(x) in equation (11) and the Euler polynomials Ek−1(x)

(see also equation (12)) that appear in their numerators. This connection is the key to

working out a method for writing down those polynomials, an achievement that will allow
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for the determination of all sums of the form

∞∑
n=0

nk

dn

(for integers k ≥ 1 and real numbers d > 1). The recursive formula expressed in equation

(14) summarizes the pattern that students have been working with up to now; this will

translate into the recursive formula (15) for the Eulerian polynomials. Task 30 challenges

students to derive (15) themselves. We suspect that the bulk of time in class will be spent

by students working out this nontrivial relationship.

– Have students formally write up their work on Task 30 (and get a good night’s rest in

preparation for Day 6).

Day 6

– Ask students to carefully review their work from Day 5, and especially on Task 30, before

they come to class this day. The goal of the day is to distill from the recursion in (15) a

method for generating the triangle of Eulerian numbers, the main tool for summing series

that generalize what Bernoulli provided in his work.

– Do Task 31! It offers carefully scaffolded steps for deriving the recursion in equation (17)

from equation (15). The relationships between the double subscripts in these expressions

may challenge many students, so we suggest being alert to offer guidance as needed here.

The technical work of this task will pay off in Task 32, when students find the neat

integer-valued sum of the series
∞∑
n=0

n4

2n
.

– Instructors may want to have students write up their work from Task 31 for homework.

However, it may be sufficient to assign only Task 33 as proof that students have understood

this approach to summing Bernoulli’s series.

Connections to other Primary Source Projects

The following TRIUMPHS PSPs are also freely available for use in teaching standard topics in the

calculus sequence. The PSP author name is listed (together with the general content focus, if this

is not explicitly given in the project title). Each of these can be completed in 1–2 class days, with

the exception of the four projects followed by an asterisk (*) which require 3, 4, 3, and 6 days

respectively for full implementation. It should be noted that four projects in the list are devoted

specifically to the topic of infinite series. Indeed, the first project below is a much shorter version

of the present PSP designed specifically for students of calculus who have recently been introduced

to summation of infinite series. Classroom-ready versions of these projects can be downloaded from

https://digitalcommons.ursinus.edu/triumphs_calculus.

• Jakob Bernoulli Finds Exact Sums of Infinite Series (Calculus version)*, Daniel E. Otero and

James A. Sellers (infinite series)

• The Derivatives of the Sine and Cosine Functions, Dominic Klyve

• L’Hôpital’s Rule, Daniel E. Otero
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• Fermat’s Method for Finding Maxima and Minima, Kenneth M Monks

• Beyond Riemann Sums: Fermat’s Method of Integration, Dominic Klyve

• How to Calculate π: Buffon’s Needle (Calculus Version), Dominic Klyve (integration by parts)

• How to Calculate π: Machin’s Inverse Tangents, Dominic Klyve (infinite series)

• Gaussian Guesswork: Elliptic Integrals and Integration by Substitution, Janet Heine Barnett

• Gaussian Guesswork: Polar Coordinates, Arc Length and the Lemniscate Curve, Janet Heine

Barnett

• Gaussian Guesswork: Infinite Sequences and the Arithmetic-Geometric Mean, Janet Heine

Barnett

• Investigations Into d’Alembert’s Definition of Limit (Calculus Version), Dave Ruch (definition

of limit)

• Eulers Calculation of the Sum of the Reciprocals of Squares, Kenneth M Monks (infinite series)

• Fouriers Proof of the Irrationality of e, Kenneth M Monks (infinite series)

• Bhāskaras Approximation to and Mādhavas Series for Sine, Kenneth M Monks (approximation,

power series)

• Braess Paradox in City Planning: An Application of Multivariable Optimization, Kenneth

M Monks

• Stained Glass, Windmills and the Edge of the Universe: An Exploration of Greens Theorem*,

Abe Edwards

• The Fermat-Torricelli Point and Cauchys Method of Gradient Descent*, Kenneth M Monks

(partial derivatives, multivariable optimization, gradients of surfaces)

• The Radius of Curvature According to Christiaan Huygens*, Jerry Lodder
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