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Braess’ Paradox in City Planning:

An Application of Multivariable Optimization

Kenneth M Monks ∗

July 18, 2023

On December 5, 1990, The New York Times published an article titled What if They Closed 42d

Street and Nobody Noticed? [Kolata, 1990] Two of the early paragraphs in this article summarize

what happened.

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

On Earth Day this year, New York City’s Transportation Commissioner decided to close

42d Street, which as every New Yorker knows is always congested. “Many predicted it would

be doomsday,” said the Commissioner, Lucius J. Riccio. “You didn’t need to be a rocket

scientist or have a sophisticated computer queuing model to see that this could have been a

major problem.”

But to everyone’s surprise, Earth Day generated no historic traffic jam. Traffic flow

actually improved when 42d Street was closed.

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

This counterintuitive phenomenon, in which the removal of an edge in a congested network

actually results in improved flow, is known as Braess’ Paradox. This paradox had actually been

studied decades earlier not by rocket scientists, but by mathematicians. In the 1968 paper “Über ein

Paradoxon aus der Verkehrsplanung” [Braess, 1968] or in English, “On a paradox of traffic planning,”,

Dietrich Braess1 described a framework for detecting this paradox in a network.

When Braess’ paper appeared in 1968, the application of mathematics to traffic planning was

still a relatively new idea.2 Today, the paradox named in his honor continues to be studied by

mathematical researchers and used by transportation specialists in the design of traffic networks.

∗Department of Mathematics, Front Range Community College – Boulder County Campus, Longmont, CO 80537;
kenneth.monks@frontrange.edu.

1Dietrich Braess is a German mathematician, born in 1938 in Hamburg. He earned his Ph.D. in
theoretical physics in 1964 at Universität Hamburg. He is currently professor emeritus at Ruhr-
Universität Bochum. You can find out more about Braess through the Mathematics Genealogy
Project website (www.genealogy.math.ndsu.nodak.edu/id.php?id=23190), or from Braess’ university webpage
(https://homepage.ruhr-uni-bochum.de/Dietrich.Braess/#eng).

2The first efforts to formulate traffic flow problems mathematically began only in the 1950s, and two publications
from that decade (Wardrop 1952 and Beckmann, McGuire and Winsten 1956) represented the state of the art when
Braess himself entered the field. Surprisingly, Braess was completely unaware of those important prior works! His
interest in the mathematical modeling of traffic flow instead was inspired by a 1967 seminar talk in which the German
mathematician W. Knödel presented a certain algorithm that roused Braess’ curiosity. At the time, Braess was 29 years
old and had only recently turned to the study of mathematics after completing his doctorate in theoretical physics just
three years earlier. Nearly 40 years later, in 2006, Braess delivered his first North American lecture on the paradox
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Other applications of Braess’ paradox have also been found in the modeling of telecommunication

networks and the Internet, as well as the design of electrical power systems and electronic circuits,

mechanical and fluid systems, metabolic networks and ecosystems, and even sports analytics [Nagur-

ney and Nagurney, 2022]. In this project, we see how the examples he provided can be analyzed

using standard optimization techniques from a multivariable calculus course.

1 The Basic Idea

How could it be possible that the removal of a road could improve traffic flow? Braess explained the

general idea in the abstract to his 1968 article.3

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

If every driver takes the path that looks most favorable to him, the resultant running times

need not be minimal. Furthermore, it is indicated by an example that an extension of the road

network may cause a redistribution of the traffic that results in longer individual running times.

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

Task 1 What did Braess assume about the behavior of drivers? Was that assumption realistic?

2 Braess’ Example Network

We now look at the example Braess provided of this phenomenon. Describing this in a precise manner

took a good bit of notation, which for convenience we organize here:

• Braess used the word nodes to represent destinations to or from which drivers travel.

• He used arrows to represent the roads connecting these nodes. Note that the direction of an

arrow indicated a one-way connection.

• He used ti (φ) to represent the time it takes to traverse road i with φ drivers on it.

• He used the notation |Φ| to represent the total number of drivers. This total number of drivers

was then split into potentially different quantities of drivers taking different paths. This was

written Φa1a2...an , to represent the number of drivers on the path from a1 to a2 to . . . to an.

• The expression T (Φ) denoted the maximum travel time for a given distribution of drivers.

That is to say, T (Φ) represented the worst-case travel time among all the drivers.

named in his honor at the Virtual Center for Supernetworks at University of Massachusets Amherst. In that lecture,
he remarked that both his lack of knowledge of the then-current state of transportation science and his background in
physics, which had trained him to look for a counterintuitive symmetry-breaking argument, were important factors in
shaping the work that led to his discovery of the paradox that now bears his name.

3Braess wrote the article [Braess, 1968] in German, although the abstract appeared in both German and English.
Except for this excerpt from that abstract, all translations of Braess excerpts in this project were prepared by Michael
Saclolo, St. Edward’s University, 2023.
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Figure 1

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

Now let us discuss an example with four vertices. For simplicity’s sake the (travel) times

tα (φ) are set as linear functions . . .

t1(φ) = t3 (φ) = 10φ,

t2(φ) = t4 (φ) = 50 + φ,

t5 (φ) = 10 + φ.

(a) If the flow is routed from a to z with |Φ| = 2, the solution is

Φabcz = 2, Φabz = Φacz = 0, T (Φ) = 52.

(b) If the flow is routed from a to z with |Φ| = 6, the solution is

Φabcz = 0, Φabz = Φacz = 3, T (Φ) = 83.

(c) If the flow is routed from a to z with |Φ| = 20, the solution is

Φabcz = 0, Φabz = Φacz = 10, T (Φ) = 160.

As we readily see, all solutions are unique.

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

Task 2 Verify the claims Braess made above. Specifically, in each of the three cases, calculate

the travel times and verify the value given for T (Φ). In each case, can you make

an argument regarding why any redistribution of the drivers will cause the maximum

travel time to increase? Note that you do not need to do an exhaustive list of every

possible distribution of drivers, nor do you need a rigorous proof, but rather aim to

provide a brief intuitive explanation why making any change will increase maximum

travel time.
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Task 3 (a) On a connection whose travel time is modeled by a linear function t(φ) = mφ+b,

where φ represents the number of drivers on that road, what would a real-world

interpretation of b be? What about m?

(b) Consider the following list of connections that appear in road networks:

– 1 km of three-lane interstate highway,

– 1 km of three-lane interstate highway that shrinks from three lanes to two

lanes halfway through,

– the tollbooth at the entrance to a tunnel, and

– the stretch of the tunnel following the tollbooth.

If each has travel time modeled by a function of the form t(φ) = mφ + b where

φ represents the number of drivers on that road, describe what you think the

sign and relative magnitude4 of m and b might realistically be for each type of

connection.

(c) Can you come up with a road map (not necessarily one from the real world, but

one from your imagination), labelled with some key geographic features (rivers,

cities, mountains, etc.), that could be represented by Braess’ example network in

Figure 1?

Braess continued his discussion of the example in Figure as follows.

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

Let us again look at the model example . . . . With the traffic density in (a) and (c), it is

most favorable to merge with the optimal flow. In the case of (b) where |Φ| = 6, the situation

is different. The optimal flow extends along the paths (abz) and (acz). But there exists a

path that consumes less time: It is Tabcz = 70 < 83 = |T (Φ)|. Suppose that the flow takes

the optimal course. The road users, who know the traveling times for various routes, would

then switch over to the path (abcz) destroying optimality in the process.

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

Task 4 Explain why in Braess’ case (b), we have the travel time on path abcz as Tabcz = 70

(as a hint, notice that the function t5 outputs a travel time of 10 when there are no

cars on the highway). Suppose all drivers realize this and everyone switches to now

take path abcz. What is the new travel time? How does it compare to the previous

travel time of 83?

4Note we say “relative magnitude” because we could make any nonzero magnitude as large as we like by measuring
time in sufficiently small units.
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In the quote below, Braess used the symbol u5 to refer to the road labelled with the number 5

in Figure 1.

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

In this context we also recognize a paradoxical fact. If in the model example the directed

edge u5 is eliminated from the network, the critical flow coincides with the optimal one;

the flow is then better distributed. What this means to traffic in practical terms is that, in

unfavorable instances, travel time can increase through an expansion of the road network.

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

Task 5 Braess claimed that this paradox occurs only in “unfavorable situations”, implying that

it does not hold all the time. Verify that this paradox does not hold in cases (a) and

(c). That is, check that no removal of an edge in those cases will result in improved

flow.

3 Average Travel Times and Multivariable Optimization

In the same paper, Braess mentioned that there is freedom to change which property of the traffic

flow is being optimized. He explored an alternate measure of how good a particular distribution is in

the excerpt below. The symbol β in the definition represents a path connecting the origin-destination

pair being considered. So, the summation is over all such paths, and the symbol Tβ represents the

travel time across path β.

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

In this underlying concept and in these results, nothing would change if the average travel

time
1

|Φ|
∑
β

ΦβTβ (Φ)

and not the maximum travel time |T (Φ)| were to be the determining factor for how good the

distribution is. Whichever definition is meaningful cannot however be decided by mathematical

considerations. The decision must be left to the traffic planners.5

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

Task 6 What were the two different measures that Braess used to determine how good a

particular traffic flow is? Can you imagine a situation where one of these measures

might be more appropriate than the other?

5Mathematicians and traffic planners in Germany had quite a bit to study around this time! In the decades that
followed the end of World War II in 1945, Germany’s cities underwent massive amounts of reconstruction and traffic
planning was a huge priority across the nation. Historian Jeffery M. Diefendorf writes “Traffic planning was central to
the radical plans for Mainz and Berlin, the conservative plans for Freiburg and Cologne, and the pragmatic plans of
cities like Aachen and Kiel. Often traffic planning took precedence over other planning goals. It would be possible to
present an almost unending list of citations in which major planners proclaimed that traffic planning formed the heart,
the Kernstück, of their efforts” [Diefendorf, 1993].
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It is slightly harder to compare average travel times using ad hoc arguments than it is to compare

maximum travel times, even in small networks like the one we discussed above. Thus, this is a great

place for the framework of multivariable calculus and optimization to step in!

Task 7 Let us see if we can verify Braess’ claim that “the results do not differ substantially”

with this new goal. Specifically, let us revisit the same road network from Braess’ case

(a). We wish to see what the optimal flow looks like when we analyze the travel times

using average rather than maximum travel time.

(a) First, we declare our variables:

– Let x represent the number of drivers who use path abz.

– Let y represent the number of drivers who use path acz.

– Let z represent the number of drivers who use path abcz.6

Briefly explain why those are the only three paths we need to consider.

(b) Explain why the functions

Tabz(x, y, z) = 10(x+ z) + (50 + x),

Tacz(x, y, z) = (50 + y) + 10(y + z), and

Tabcz(x, y, z) = 10(x+ z) + (10 + z) + 10(y + z)

describe the travel times on their respective subscripted paths.

(c) Every Lagrange multipliers optimization involves two components: a constraint

and an objective function. Explain why in this case, the constraint should be

x+ y + z = 2

and the objective function (representing average travel time) is

A(x, y, z) =
x · Tabz(x, y, z) + y · Tacz(x, y, z) + z · Tabcz(x, y, z)

2
.

(d) Use Lagrange multipliers to find the minimum possible average commute time.7

Note that Braess was only looking at integer values of x, y, and z; instead,

Lagrange multipliers will be searching over all real numbers x, y, and z. Thus,

you may find a better minimum!

(e) Check your work another way: throw out z by substituting z = 2 − x − y into

the formula for A(x, y, z). Now that A is a function of only x and y, find the

critical points by setting ∂A/∂x and ∂A/∂y equal to zero and then applying the

6Note that here we are using the symbol z in two different senses: once to label the destination in Braess’ example
network, and once as the variable representing the number of drivers taking a certain path. If it bothers you, feel free
to change it out for w, or if it doesn’t bother you, feel free to proceed, as in this case context will always make it quite
clear which is which.

7Do not be bothered if the results are not whole number values of x, y, and z. Perhaps the 2 which measures the
total flow is measured in units of thousands of cars, or tens of thousands even. In these cases, fractional values of x, y,
and z might make perfectly good sense.
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second derivative test. Can you confirm the minimum average travel time from

the previous part?

(f) Is the minimum that you found a stable state? That is, if the drivers were to

be distributed as per that optimal arrangement, would it stay that way or would

drivers begin to switch their routes? If they re-route, what is the new average

travel time, and how does it compare to the previous average?8

(g) If you delete the road that connects b to c, what is the new minimum average

travel time?

(h) Use the information you gathered throughout the parts of this task to verify

that Braess’ paradox is still not present in his example (a), using average rather

than maximum travel time, thus verifying his claim that the “results do not differ

substantially” in this case.

3.1 So How Often Does This Actually Happen?

Looking at the strange behavior of Braess’ case (b), one might wonder if this is a common enough

phenomenon to really think about in traffic planning, as opposed to a pathological example built by

Braess just for the fun of exploring interesting mathematical objects. This question was answered

in the paper “The Prevalence of Braess’ Paradox” [Steinberg and Zangwill, 1983]. In their abstract,

they stated their main result.

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

The present paper gives, under reasonable assumptions, . . . that Braess’ Paradox is about

as likely to occur as not occur.

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

Their “reasonable assumptions” included the following:

• There is just a single origin-destination pair on which the flow is being considered.

• The network is congested; in noncongested networks, one can show that Braess’ paradox will

never occur.

The following task will require a bit of external reading. Provide a list of any references used in

your answer.

Task 8 (a) Do a bit of research and find a few examples throughout the history of city

planning (other than the one described in this project) where Braess’ Paradox

has been observed.

(b) Pull up a road map of a metropolitan area of interest to you! Perhaps it is the

area you grew up in, the area you currently live in, a place you would like to

visit, or the landing place of a dart you threw at a map. Look at the map and

think about traffic patterns. Do you suspect Braess’ Paradox might be occurring

in this area? Can you identify a road (and use mathematics to back it up) whose

closure might result in improved traffic flow?

8One could argue that results like these make a great case for driverless cars with a centralized navigation center
which optimizes the minimum average commute time for the entire group rather than individual drivers all acting
selfishly!
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Notes to Instructors

PSP Content: Topics and Goals

This PSP is intended to give students an instance where they can apply the standard techniques

of optimization from a multivariable calculus course. The author has found this to be particularly

valuable as such courses tend to be full of a plethora of physics and engineering applications (which

are lovely) but little beyond that. Not only do students get practice with the standard Lagrange

multiplier and critical point/second derivative test techniques, but they get some exposure to key

ideas of graph theory and discrete optimization along the way, and get to see that the ideas of

multivariable calculus can be applied in areas beyond physics and engineering. The key competencies

which come up in this project are as follows:

• Lagrange multipliers

• Partial derivatives

• Critical points and the second derivative test for surfaces

Student Prerequisites

The standard multivariable optimization techniques listed above are the only prerequisites for stu-

dents attempting this project.

PSP Design, and Task Commentary

This PSP was designed by very carefully threading a reasonable path through Braess’ work that a

multivariable calculus student can follow, with the absolute minimum amount of extra prerequisite

knowledge. Specifically, the author did not wish to derail his multivariable calculus class by turning

it into a course on graph theory and combinatorial optimization (or maybe he wished to do so

but chose not to for the sake of actually covering the course competencies). Thus, the PSP starts

by giving students a bare minimum of required notation for them to be able to understand the

graph that Braess used for all of his examples. Then, when analyzing average travel times, the

techniques required in Task 7 lie solidly in the standard topics of a first course in multivariable

calculus (specifically critical points, second derivative test, and Lagrange multipliers).

Suggestions for Classroom Implementation

It could be helpful to provide students with a bit more guidance in the earlier parts of the project; the

later parts are routine applications of multivariable calculus techniques. As an extension, instructors

may wish to inform students that they can take whole courses in combinatorial optimization. The par-

ticular situation addressed here (optimizing the maximum travel time) was just the tip of the iceberg.

The instructor may encounter the student who wishes to see this a bit more with their own eyes.

In this case, we recommend the exploration of Brian Hayes’ simulator (which was used to generate

the animation for the onscreen article in the Convergence publication of this PSP), found at http://

bit-player.org/extras/traffic/ along with corresponding American Scientist article at http://

bit-player.org/wp-content/extras/bph-publications/AmSci-2015-07-Hayes-traffic.pdf.

For the student who loves computer programming, an interesting project could involve customization

of that simulator (source code available at https://github.com/bit-player/traffic). In partic-

ular, Hayes’ simulator has a two-directional connection that can be added or removed, as opposed to

the network in Braess’ example which has only one-directional connections. It would be interesting

to see how that restriction changes the simulator.
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Sample Implementation Schedule (based on a 50-minute class period)

If an in-class activity is desired, the following would be a reasonable breakdown:

• Advance reading: Read the opening sources, up to but not including Task 2.

• First 20 minutes of class time: lead discussion on the opening passages, likely including ad-

dressing some questions on what the notation and the figure represent. Together, work out

Task 2 for case (a). Then let the students verify cases (b) and (c).

• 30 minutes: Let students carry out the analysis of the network with respect to average travel

times, using the standard optimization techniques learned in a multivariable calculus class.

Completed write-up of the PSP can then be due the following week.

The author, however, does not implement this PSP in that manner. Rather, the author uses

this as one of a choice of projects. A small group of students (perhaps 2–3) could have time in class

one session to prepare solutions and time in class another session to present solutions in a mini-

conference. Ideally, the other students would be doing the same but on different projects in parallel.

Four further student projects appropriate for the study of optimization in a multivariable calculus

course are available upon request from the author (although none of these additional projects are

based on primary source material).

The author is happy to provide LATEX code for this project. It was created using Overleaf which

makes it convenient to copy and share projects and can allow instructors to adapt this project in

whole or in part as they like for their course.

Connections to other Primary Source Projects

The following additional projects based on primary sources are also freely available for use in teaching

standard topics in the calculus sequence. The PSP author name of each is given (together with the

general content focus, if this is not explicitly given in the project title). Each of these projects can be

completed in 1–2 class days, with the exception of the four projects followed by an asterisk (*) which

require 3, 4, 3, and 6 days respectively for full implementation. Classroom-ready versions of these

projects can be downloaded from https://digitalcommons.ursinus.edu/triumphs_calculus/.

• Investigations Into d’Alembert’s Definition of Limit (Calculus version), by Dave Ruch

• L’Hôpital’s Rule, by Daniel E. Otero

• The Derivatives of the Sine and Cosine Functions, by Dominic Klyve

• Three Hundred Years of Helping Others: Maria Gaetana Agnesi on the Product Rule, by Ken-

neth M Monks (product rule)

• Fermat’s Method for Finding Maxima and Minima, by Kenneth M Monks

• Gaussian Guesswork: Elliptic Integrals and Integration by Substitution, by Janet Heine Barnett

• Gaussian Guesswork: Polar Coordinates, Arc Length and the Lemniscate Curve, by Janet

Heine Barnett

• Gaussian Guesswork: Infinite Sequences and the Arithmetic-Geometric Mean, by Janet Heine

Barnett

• Beyond Riemann Sums: Fermat’s Method of Integration, by Dominic Klyve (uses geometric

series)

• How to Calculate π: Machin’s Inverse Tangents, by Dominic Klyve (infinite series)
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• Euler’s Calculation of the Sum of the Reciprocals of Squares, by Kenneth M Monks (infinite

series)

• Fourier’s Proof of the Irrationality of e, by Kenneth M Monks (infinite series)

• Jakob Bernoulli Finds Exact Sums of Infinite Series (Calculus Version),* by Daniel E. Otero

and James A. Sellars

• Bhāskara’s Approximation to and Mādhava’s Series for Sine, by Kenneth M Monks (approxi-

mation, power series)

• Stained Glass, Windmills and the Edge of the Universe: An Exploration of Green’s Theorem,*

by Abe Edwards

• The Fermat-Torricelli Point and Cauchy’s Method of Gradient Descent,* by Kenneth M Monks

(partial derivatives, multivariable optimization, gradients of surfaces)

• The Radius of Curvature According to Christiaan Huygens,* by Jerry Lodder
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