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The Trigonometric Functions Through Their Origins:

al-B̄ırūn̄ı Does Trigonometry in the Shadows

Daniel E. Otero∗

September 16, 2021

Trigonometry is concerned with the measurements of angles about a central point (or of arcs of

circles centered at that point) and quantities, geometrical and otherwise, which depend on the sizes

of such angles (or the lengths of the corresponding arcs). It is one of those subjects that has become

a standard part of the toolbox of every scientist and applied mathematician. Today an introduction

to trigonometry is normally part of the mathematical preparation for the study of calculus and

other forms of mathematical analysis, as the trigonometric functions make common appearances

in applications of mathematics to the sciences, wherever the mathematical description of cyclical

phenomena is needed. This project is one of a series of curricular units that tell some of the story of

where and how the central ideas of this subject first emerged, in an attempt to provide context for

the study of this important mathematical theory. Readers who work through the entire collection of

units will encounter six milestones in the history of the development of trigonometry. In this unit,

we work with passages from an 11th-century text written in Arabic which includes precursors to four

modern trigonometric functions: tangent, cotangent, secant, and cosecant.

1 Medieval Islamic Mathematics—why Trigonometry?

Roughly between the years 750 CE and 1400 CE, Islamic scholars, from their early homelands in

Arabia, and later from places westward to European Spain and eastward to northern India, fostered

attention to the preservation and development of mathematical and astronomical knowledge. While

a list of their accomplishments, even only those in mathematics, is impossible to catalog here, there

are two famous advances worth noting. First, Islamic scholars adopted the arithmetical techniques

of the Hindus, using ten symbols (early versions of the signs 1, 2, 3, 4, 5, 6, 7, 8, 9 and 0) to represent

whole numbers in decimal form—what we today call Indo-Arabic numeration. Beginning in about

1000 CE, these methods migrated into Europe and influenced the development of computational

methods by Western scholars for centuries to come. Some time before this, however, in about the

year 820 CE, a seminal work by Muh.ammad ibn Mūsā al-Khwārizmı̄ (c. 780–850 CE) was written.

In Arabic it is titled Al-kitāb al-mukhtas.ar f̄ı h. isāb al-jabr wa’l-muqābala, which translated means

The Compendium on Calculation by Completion and Reduction, and which we remember by the

Latinization of one of the words in its Arabic title as Algebra.1 This work outlined general methods

for solving equations for unknown quantities and fueled the growth of a whole new main branch of

∗Department of Mathematics, Xavier University, Cincinnati, OH, 45207-4441; otero@xavier.edu.
1For more on al-Khwārizmı̄’s Algebra, see the project “Completing the Square: From the Roots of Algebra,” at

https://blogs.ursinus.edu/triumphs/.
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mathematical activity [Berggren, 2003, Katz, 1998, Suzuki, 2009]. Al-Khwārizmı̄’s text marks the

beginning of the second major mathematical advance due to medieval Islamic scholars: namely, the

development of methods for a highly general sort of problem solving—algebra—which provided a

powerful tool for making further mathematical developments.

Islamic mathematicians were interested in more than arithmetic and algebra, however. Muslim

practice requires devotion to s.alāt, or daily ritual prayer, at prescribed times of day. For this and other

reasons, Islamic scholars were very interested in accurate timekeeping. Thus, the study of shadow

clocks became an important concern, and this helped to further developments in trigonometry in this

era. The shadow clock was the simplest of tools, requiring little more than a straight stick planted

firmly and vertically into flat ground. In any part of the world where weather conditions permitted

the Sun to regularly shine brightly, the stick would cast a shadow on the ground. (See the diagram

in the source text on the next page.) As long as the user was sufficiently versed in the movements of

the Sun as it traveled slowly but inexorably across the daytime sky, one could infer from the height

of the stick and the length of the shadow how far the Sun had gone in its course that day, providing

an instant and reliable way to tell time.

An important contributor to the mathematics behind this science of horology (or timekeeping;

from the Greek hōra, for time) was the Khwarezmian2 scholar Abū Rayh. ān Muh.ammad ibn Ah. mad

al-B̄ırūn̄ı (973–1048). Al-B̄ırūn̄ı was a polymath who made a name for himself as an expert in the

history, geography, and the religious and scientific legacy of India, where he traveled extensively; his

most famous work, dating from 1017, was al-Hind (A History of India)3 [al-B̄ırūn̄ı, 1017; 2015]. But

in this project, we will read an excerpt from a different work by al-B̄ırūn̄ı, Ifrād al-maqāl f̄ı amr

al-z. ilāl (The Exhaustive Treatise on Shadows) [al-B̄ırūn̄ı, 1021; 1976], compiled in 1021 while he was

living in Ghazn̄ı4 in the court of a Turkish sultan.

2 Gnomons and the Casting of Shadows

We begin by reading a selection from al-B̄ırūn̄ı’s treatise The Exhaustive Treatise on Shadows in

which he addressed the mathematical relationships between the lengths of a shadow cast by the Sun

and the angles of elevation of the Sun above the horizon.

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

The Sixth [Chapter]: On the method by which the use of the shadow and the gnomon5

is arranged.

[. . . W]e say that plane surfaces upon which shadows fall are numerous. They are all planes

of local horizons, which will be determined if their latitudes are known. And the shadows . . .

are of two kinds, like [any] category containing its [different] types. One of the two of them is

2Khwarezm is a region of central Asia—today part of Uzbekistan—which was also home to the aforementioned
al-Khwārizmı̄, the “Father of Algebra.”

3The full title of this text is rather daunting: Tah. q̄ıq mā li-l-hind min maqūlah maqbūlah f̄ı al-‘aql aw mardhūlah
(Verifying All That the Indians Recount, the Reasonable and the Unreasonable), but in Western histories, it is often
abbreviated to simply al-Hind (India).

4Ghazn̄ı is now a town in central Afghanistan.
5Gnomon is a Greek word that might best be translated ‘indicator’ (literally, “the one who knows”); it refers to an

object whose shadow is used to tell the time of day.
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the [direct] shadow6 which . . . is bordered by the shadow-caster and that part of the horizon

plane which is between them. But since light can be perceived on the flat of the earth, a

place devoid of light is called shadow, and the shadow-caster is called the gnomon, but when

it is used, especially in computation, [it is called] the scale.

That sort of shadow is always in the plane of a circle of altitude through the shadow-caster

[and cast] on the part in common between it and the plane of the horizon in the case of the

vertical gnomon perpendicular to it . . . .

G

B

E

A

An example of the direct shadow is [the following]: Let A be the body of the sun and

BG the gnomon perpendicular to EG, which is parallel to the horizon plane, and ABE is the

sun’s ray passing through the head of the gnomon BG. So will BGE be the shadow in space.

But EG is that which is called the direct shadow such that its base is G and its end E. And

EB, the line joining the two ends of the shadow and the gnomon, is the hypotenuse of the

shadow.

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

Task 1 Al-B̄ırūn̄ı opened this passage by stating that the “planes” on which shadows are cast

are “planes of local horizons, which will be determined if their latitudes are known.” Why

are shadows cast by the Sun different in different places on the Earth, depending on

their latitude?

Task 2 What geometric figure does al-B̄ırūn̄ı use to model the “shadow in space” cast by

the gnomon? Copy the diagram provided with the text, then in your copy label

each of these elements: Sun, circle of altitude, horizon plane, gnomon, direct shadow,

hypotenuse of the shadow.

6Italics have been added by the project author to the source texts to emphasize important technical terms; they are
not in the published translation [al-B̄ırūn̄ı, 1021; 1976].
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We continue our reading of al-B̄ırūn̄ı’s description of the two kinds of shadows.

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

However, as for the second type of shadow, it is that whose gnomon is [parallel to] the

horizon plane. Then the gnomon is perpendicular to a plane which is itself perpendicular both

to the horizon plane and the circle of altitude. And the shadow itself [accordingly] will be

along the axis of the horizon. It is called the reversed [shadow ] because its head is under its

base.

G
B

E

A

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

Task 3 Copy the second diagram provided with the text. Then label these elements of your

diagram: Sun, circle of altitude, gnomon, reversed shadow. Which points do you think

al-B̄ırūn̄ı referred to as the head and the base of the shadow?

The height of the Sun (also called its altitude) along its circular path across the sky, and therefore

the length of the shadow it casts at a particular time of day, depends very much on the observer’s

location—the “planes of local horizons” mentioned by al-B̄ırūn̄ı. The further north the observer stands

(that is, the higher the location’s latitude), the lower the Sun rides across the sky, which in turn

means the longer the direct shadows become (and the shorter the corresponding reversed shadows).

Regardless of one’s latitude, however, there is a fixed relationship between the angle of elevation

of the sun and the length of a shadow cast by an object, as measured relative to the length of the

object itself. For instance, a stick 1 foot long casts a shadow that is 1 foot long when the sun is at

an elevation corresponding to 45 degrees, regardless of where on the earth that object is placed. Of

course, when—or even if—the sun actually reaches an elevation of 45 degrees at a particular location

depends on that location’s latitude; for instance, in Cincinnati, Ohio (latitude 39◦9′N and longitude

84◦28′W),7 this happens just after 3:00 PM on September 22, 2021. But in other locations further

7Not surprisingly, this is where the author lives.
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north or south of Cincinnati at different latitudes (but in the same time zone) on that same date,

the sun attained that elevation at some other o’clock (or not at all, if that place was too far north).

Al-B̄ırūn̄ı aimed to discover the technical details of this relationship between the altitude of the

Sun (that is, the arc from the horizon up to the Sun along the heavenly circle through the Sun and

the observer’s zenith point) and the length of the shadow that the Sun casts. The gnomon used to

create the shadow was used as a scale unit for making this measurement.

To accomplish this goal, al-B̄ırūn̄ı (and his contemporaries) made use of the Sine of an arc

in a circle; that is, the side of the right triangle created by dropping the perpendicular from one

endpoint of the arc to the radius connecting the center of the circle to the other endpoint of the

arc.8 As the arc increases in size from spanning small angles (like θ in the diagram below) to larger

ones (like ψ), the Sine also increases in length and attains its maximum length when the arc is a full

quarter of the circle (for angle 90◦). This largest possible Sine is called the total Sine; note that it

is one of the radii of the circle. As we will see in the passages that we will read in the next section

of this project, both the Sine of an arc and the total Sine played a role in al-B̄ırūn̄ı’s study of the

relationship between the Sun’s altitude and the length of the shadow that it casts. Indeed, by the

time of al-B̄ırūn̄ı, mathematical astronomers were comfortable using tables of Sine values, called a

z̄ıj in Arabic, as part of their standard computational toolbox.

total Sine

Sin θ

Sinψ

θ

ψ

Cos θ
Cosψ

Note that the Sine of an arc is one of the legs of a right triangle for which the hypotenuse is a radius

of the underlying circle. The other leg of this right triangle is equal to the Sine of the complementary

arc, and would eventually be known by geometers as the Cosine of the (original) arc. Where θ

is the measure of the angle corresponding to the arc, these quantities are then abbreviated Sin θ

and Cos θ, respectively. And when the radius of the circle is of unit length, this is highlighted by

using lowercase initial letters: sin θ and cos θ. The capital letter is employed to remind us that the

length of the Sine or Cosine of the arc depends on how long the radius of the underlying circle is,

even though the degree measure of the angle (or the corresponding arc) does not; in contrast, the

lowercase sine or cosine will always be a quantity smaller than 1, the length of the radius of the unit

circle.

8This definition of Sine is equivalent to the one given by the earlier Indian mathematician Varāhamihira (505–587
CE), who composed a treatise that summarized the Babylonian, Egyptian, Greek, Roman and Indian astronomy of his
day. This astronomy carried forward an even earlier tradition that employed tables of chords in circles associated with
the arcs they spanned, rather than the tables of Sines of these arcs that featured in Hindu science. For more about
this, see the project “Varāhamihira and the Poetry of Sines,” at https://blogs.ursinus.edu/triumphs/.
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3 Move Over, Sine and Cosine!

Here is al-B̄ırūn̄ı’s statement of the relationship between the altitude of the Sun and the direct

shadow, from the Ninth Chapter of his treatise, entitled “On the direct shadow and the altitude, and

the extraction of one of the two from the other if [either is] unknown.”

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

The ratio of the gnomon to the hypotenuse of the shadow is as the ratio of the Sine of

the altitude to the total Sine.

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

The following diagram was used by al-B̄ırūn̄ı to prove this assertion. As this diagram will also help

us to decipher what the assertion means, study it carefully as you read through the next passage.

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

A

B

G

D

E

H

[J]

T

L

K

[I]

[gnomon]

Let ABG be the circle of altitude with center E, representing the gnomon head, and AEG

the common part between the plane of the horizon and the plane of this circle, and B [and]

D are the two poles of the horizon.9 We lay off EL equal to the gnomon, and the sun is at

point H. So AH will be its altitude and the perpendicular HT is the Sine of this altitude, and

HB the complement of its altitude, and ET is equal to its Sine. We extend ray HEK and LK

perpendicular to EL. So LK will be the direct [shadow ] of the altitude AH, and KE will be the

hypotenuse of the direct [shadow ], and by virtue of the parallelism of the two lines LK [and]

TE the angle HET will be the external [one] equal to the angle EKL, and the two angles T

[and] L will be right angles. So the triangles EKL [and] HET will be similar, and the ratio of

EL, the gnomon, to KE, the hypotenuse of the direct [shadow], will be as the ratio of HT,

the Sine of the altitude, to EH, the total Sine.

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

9B is the zenith point, directly overhead of the observer. D is the observer’s nadir, and is the point on the celestial
sphere opposite the zenith point, below the observer’s feet and therefore not in view. The labels of the points I and J
have been added to this figure by the project author.
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Task 4 Copy the diagram provided with the text. Then label these elements of the diagrams:

Sun, circle of altitude, gnomon, direct shadow, hypotenuse of the direct shadow, altitude

(of the Sun),10 complement of the altitude (of the Sun),11 Sine of the altitude (of the

Sun), Sine of the complement of the altitude (of the Sun), total Sine.

Task 5 In this passage, al-B̄ırūn̄ı argued that “the triangles EKL [and] HLT will be similar.”

Justify this fact in your own words.

Task 6 In the same way that al-B̄ırūn̄ı invoked the similarity of triangles HET and EKL

in the diagram above, it is possible to show that both these triangles are similar to

triangle EJD. Do this!

Task 7 Explain why al-B̄ırūn̄ı’s assertion that “the ratio of EL, the gnomon, to KE, the hy-

potenuse of the direct [shadow], will be as the ratio of HT, the Sine of the altitude, to

EH, the total Sine” must be true.

The results of Tasks 5 and 7 make clear that, not only are the ratios EL to KE and HT to

EH equal, but both are equal to the ratio of ED to EJ . Because the ratios in these triangles hold

greater significance than their absolute sizes, al-B̄ırūn̄ı could have taken the triangle of the gnomon

and its shadow to be the triangle EJD instead of EKL. Indeed, other astronomers set up their

geometry of shadows in just this way, so that the radius of the circle ED was taken to represent the

gnomon and the direct shadow corresponded to the line segment DJ tangent to (or touching12) the

circle.13 Under this setup, the triangle spans an arc, DI, that is complementary to the arc of the

Sun, AH. (Make sure you see why it is that the arc DI is complementary to the arc AH!) Later

mathematicians would call the segment DJ the Cotangent of the arc AH, since DJ is tangent to

the circle and spans an arc DI which is complementary to the arc AH. It is abbreviated as Cot θ,

where θ is the angle corresponding to the arc AH. If, moreover, the gnomon and radius are both

taken to be a unit length, then we call the segment DJ the cotangent (with lowercase ‘c’) and denote

it cot θ.

Task 8 Draw two copies of the previous diagram in which the gnomon EL coincides with the

radius of the circle (L = D and K = J), but label the diagrams so that in one, the

gnomon and radius are of unit length, while in the other, the gnomon and radius have

(equal) lengths different from 1 (either larger or smaller than 1). Use similarity of

triangles to explain why the ratio of the Cotangent of arc AH to its gnomon in the

second drawing is equal to the cotangent of the same arc in the first diagram.

If we continue to choose the gnomon to coincide with the radius of the circle ED, then the

hypotenuse of the direct shadow for arc AH will be the segment EJ in the figure, cutting through

the circle; this hypotenuse of the direct shadow would in later centuries be called the Cosecant of

the arc (or cosecant in a circle of unit radius), abbreviated to Csc θ (or csc θ), since the segment

10Note that this will be an arc of the circle of altitude!
11Another arc of the circle of altitude!
12The Latin word tangere means to touch.
13The highly influential Greek mathematician Claudius Ptolemy (fl. ca. 250 CE) also set up the geometry in this

way. You can learn more about his work in the project “Ptolemy Finds High Noon in Chords of Circles,” at https:

//blogs.ursinus.edu/triumphs/.
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EJ cuts through14 the circle and corresponds to an arc DI which is complementary to the given arc

AH.

Task 9 At the end of the preceding passage above, al-B̄ırūn̄ı used the similarity of triangles

HET and EKL to relate the hypotenuse of the direct shadow to the Sine of the arc.

In Task 6, you further showed that those two triangles are similar to triangle EJD.

Use the similarity of all three of these triangles to recast al-B̄ırūn̄ı’s opening assertion

that “the ratio of EL, the gnomon, to KE, the hypotenuse of the direct [shadow], will be

as the ratio of HT, the Sine of the altitude, to EH, the total Sine” as a formula that

relates csc θ to sin θ. Then develop a similar formula that will relate cot θ with sin θ

and cos θ.

In the Tenth Chapter of The Exhaustive Treatise on Shadows, entitled “On the reversed shadow

and the altitude, and the extraction of one of the two from the other if [either is] unknown,” al-B̄ırūn̄ı

treated the case of the reversed shadow.

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

For the reversed shadow let us repeat the preceding figure and lay off the gnomon along

diameter AG.15

A

B

G

D

[E]

H

[J]

T

L

K [I]

[gnomon]

LK will be the reversed [shadow] of the gnomon EL. And the two triangles HTE (and)

KLE will remain similar, so the ratio of LK to KE is as the ratio of HT to HE, and the ratio

of HT to TE is as the ratio of LK to LE.

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

14The Latin word secare means to cut.
15The points I and J, and the dashed lines that connect them within the following figure, are not in the original and

have been added by the project author to mimic their positions in the earlier diagram from al-B̄ırūn̄ı’s Ninth Chapter.

8



Task 10 If al-B̄ırūn̄ı had made the gnomon coincide with the radius of the circle of altitude in

the last diagram above so that L = G and K = J , what segment in the diagram would

then represent the gnomon? the reversed shadow? the hypotenuse of the reversed

shadow? (You may want to redraw the diagram for yourself to correspond to this

situation.)

In later centuries, what al-B̄ırūn̄ı called the reversed shadow for a given arc came to be called

the Tangent of the arc, since in the case where the length of the gnomon coincides with the radius

EG of the circle of altitude, the reversed shadow segment GJ is tangent to the circle and spans an

arc equal to that of the given arc. Similarly, the hypotenuse of the reversed shadow EJ came to be

called the Secant of the arc, since the hypotenuse cuts through the circle and corresponds to an

arc equal to that of the given arc. (Once again, make sure you see these relationships in the diagram

above!) The notation accompanying these quantities mirrors that described earlier for Cosecant and

Secant: if θ is the angle corresponding to the given arc, then Tan θ and Sec θ represent the Tangent

and Secant of the arc. Likewise, Tangent and Secant have “lowercase” versions, tan θ and sec θ, used

when the radius of the circle is assumed to have unit length.

Task 11 (a) Explain why the three triangles HET , KEL and JEG in the last diagram above

are mutually similar.

(b) Use similarity of triangles HET and KEL to establish a proportion relating the

Tangent LK of arc AH (corresponding to the angle θ) and the gnomon EL to

the Sine HT and Cosine ET of arc AH.

(c) Use the similarity of triangles HET and JEG to establish a formula linking tan θ

to sin θ and cos θ.

4 Making Trigonometry in the Shadows

Al-B̄ırūn̄ı was interested in more than just naming the geometric elements of his shadow diagrams.

Indeed, he had done all this geometric naming to deal with the fundamental astronomical problem

of telling time by the Sun. In this next excerpt we return to the Ninth Chapter of his treatise to see

how he employed trigonometry to handle this central problem in the case of a shadow-caster clock

that casts a direct shadow. We have also reproduced the corresponding diagram.

In order to simplify the work of making sense of this and subsequent passages, let us suppose

that the gnomon we are working with is chosen to be equal to the radius and that both are taken to

have unit length. This means that the capital-letter trigonometric quantities (implicitly) referred to

here, Cotangent and Cosecant, can be identified with their lowercase counterparts. More practically,

however, this also means that a modern calculator can be used to compute these quantities, since

scientific calculators have buttons for the sine, cosine and tangent quantities; this removes the need

for consulting a z̄ıj table, as al-B̄ırūn̄ı would have had to do! (More on that in the next section . . .)
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∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

A

B

G

D

E

H

[J]

T

L

K

[I]

[gnomon]

If we are given the [direct] shadow at a certain time and we want to find the altitude of

the sun for that time, we multiply the shadow by its equal and we take [the square root] of the

sum [with the square of the gnomon], and it will be the hypotenuse [of the direct shadow].

Then we divide the product of the gnomon with the total Sine by it [the hypotenuse], and

there comes out the Sine of the altitude. We find its corresponding arc in the Sine table and

there comes out the altitude of the sun at the time of that shadow. Thus we operate for the

Sine of any named arc if it is given.

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

Task 12 Consider now a particular case of the problem posed in the passage: suppose that “the

[direct] shadow at a certain time” is twice the length of the gnomon. We shall follow

al-B̄ırūn̄ı’s directions to determine the value of the arc of the Sun that casts the given

shadow.

(a) Let θ represent the angle for “the altitude of the Sun for that time.” Further

assume that “the gnomon” equals the radius of the underlying circle, which we

take to be 1 unit long so that all the trigonometric quantities mentioned in the

passage will have lowercase labels (as in the first diagram in Task 8). Which

of the quantities sin θ, cos θ, tan θ, sec θ, cot θ, csc θ, or 1 corresponds with each of

these items mentioned by al-B̄ırūn̄ı in the passage above:

(i) “the [direct] shadow”

(ii) “the gnomon”

(iii) “the hypotenuse [of the direct shadow]”

(iv) “the total Sine”

(v) “the Sine of the altitude”

10



(b) Al-B̄ırūn̄ı directed his reader to “multiply the shadow by its equal” and “take [the

square root] of the sum [with the square of the gnomon]” to obtain “the hypotenuse

[of the direct shadow].” Rewrite this procedure in the form of a trigonometric

equation using the representations found in part (a).

(c) Continuing, al-B̄ırūn̄ı proceeded to “divide the product of the gnomon with the total

Sine” by the value of this “hypotenuse,” resulting in “the Sine of the altitude.” In

a similar way, rewrite this procedure in the form of a trigonometric equation.

(d) If, as we assumed at the outset, “the [direct] shadow at a certain time” is twice the

length of the gnomon, then what, according to the equations derived here, is the

value of the “the Sine of the altitude?” Use the SIN−1 button on your calculator16

to determine the value of the arc θ and find how high (in degrees) the Sun is off

the horizon.

Task 13 Now suppose that “the [direct] shadow at a certain time” is precisely equal to the length

of the gnomon. It shouldn’t be too difficult to guess how high the Sun must be in the

sky at that moment by thinking about the triangle that corresponds to this situation,

but work through al-B̄ırūn̄ı’s instructions nonetheless to confirm your guess.

Al-B̄ırūn̄ı applied similar trigonometric machinery in his Tenth Chapter to deal with the case of

a wall-mounted shadow-caster. (Again, we reproduce the associated diagram.)

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

A

B

G

D

[E]

H

[J]

T

L

K [I]

[gnomon]

If we are given that the reversed [shadow] is known and we need its altitude, we would

take the root of the sum of the squares of the reversed [shadow] and its gnomon so that there

16The notation SIN−1 denotes what is called the inverse sine, or arcsine, and is used to identify the arc or angle
whose sine has a given value. Thus, if a = sin θ (and θ is within 90◦ of 0◦), then θ = sin−1 a. There are similar inverses
which are attached to the other trigonometric quantities; for instance, cos−1 b, the inverse cosine or arccosine of b,
is the measure of the arc or angle whose cosine equals b. Most scientific calculators will include SIN−1, COS−1 and
TAN−1 buttons to compute these quantities.
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would result the hypotenuse [of the reversed shadow]. Then we multiply the reversed [shadow]

by the total Sine and we divide the result by the hypotenuse [of the reversed shadow], and

there will result the Sine of the altitude.

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

Task 14 (a) Explain why al-B̄ırūn̄ı was correct to state that “the root of the sum of the squares

of the reversed [shadow] and its gnomon” produced “the hypotenuse [of the reversed

shadow].” Refer to the segments within the figure above. What fundamental

geometric result did he invoke here?

(b) In the final sentence in the passage above, al-B̄ırūn̄ı asserted that if “we multiply

the reversed [shadow] by the total Sine and we divide the result by the hypotenuse

[of the reversed shadow], . . . there will result the Sine of the altitude.” Recast this

statement in terms of the trigonometric quantities sec θ, tan θ and sin θ.

(c) Provide an argument based on similar triangles for the truth of the statement in

part (b).

Task 15 Use the geometry of the diagrams from al-B̄ırūn̄ı’s Ninth and Tenth Chapters to explain

why the following general trigonometric formulas are true:

tan θ =
sin θ

cos θ
, cot θ =

cos θ

sin θ
.

5 A Table of His Own

In The Exhaustive Treatise on Shadows, al-B̄ırūn̄ı also provided a table—or using his jargon, a z̄ıj —

that recorded the lengths of both direct and reversed shadows (cotangents and tangents, respectively)

for arcs between 1◦ and 90◦; we only display the beginning of the table here, for arcs up to 15◦. As

you examine the table, note that the lengths that appear in the final column of al-B̄ırūn̄ı’s table

are in sixtieths of the gnomon length. Indeed, since al-B̄ırūn̄ı was working within the astronomical

tradition dating back 2000 years before him to Babylonian times, he, like all other early astronomers,

computed using a hybrid decimal-sexagesimal numeration.17 So, for instance, the tangent of an arc

corresponding to an angle of 82◦ is given as [426; 15], or 426 + 15
60 = 426.25 sixtieths of a gnomon

unit. Division of this number by 60 shows that it corresponds to a bit more than 7 times the gnomon

unit. You can easily check with a scientific calculator that tan(82◦) is indeed a bit larger than 7.

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

The Twelfth [Chapter]: On tables containing shadows, exclusive of their computation,

and how to obtain them.

17The ancient Babylonians used a base-60, or sexagesimal, numeration system, entirely similar to our familiar Indo-
Arabic numerals, except that instead of employing ten symbols for the numbers 0 to 9 and concatenating digits
to the right to represent decreasing powers of 10, they employed 59 digits to represent the numbers 1 to 59 and
concatenated digits to represent decreasing powers of 60. For more about this, see the project “Babylonian Astronomy
and Sexagesimal Numeration,” available at https://blogs.ursinus.edu/triumphs/.
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It is customary among authors of z̄ıjes to put the values of the shadows corresponding to

their arcs in tables arranged part by part, and this arrangement is befitting it, and this is how

we put them.

[for the] [for the] parts

direct shadow reversed shadow [sixtieths]

1 89 [3437; 22]

2 88 [1718; 11]

3 87 [1144; 52]

4 86 [858; 2]

5 85 [685; 43]

6 84 [570; 52]

7 83 [488; 40]

8 82 [426; 15]

9 81 [378; 49]

10 80 [340; 17]

11 79 [308; 40]

12 78 [282; 17]

13 77 [259; 54]

14 76 [240; 39]

15 75 [223; 55]

. . . . . . . . .

90 0 [0; 0]

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

Task 16 Make three independent observations about what you notice about the structure of

this table or about any regularities you observe in the values presented here.

Task 17 Verify that al-B̄ırūn̄ı’s values for tan(75◦), tan(80◦), and tan(85◦) are quite close to the

more accurate values you will obtain from a scientific calculator.

Task 18 (a) Suppose that the elevation of the Sun is 15◦ above the horizon; according to

al-B̄ırūn̄ı’s table, how long should the (direct) shadow cast by a 1 meter long

(vertical) gnomon be? [Task 15 will be useful here!]

(b) How long should the shadow cast by a wall-mounted 0.5 meter long gnomon be

if the Sun is 85◦ above the horizon?

13



6 On Beyond Z̄ıjes

Modern trigonometry has today become the study of the six functions of a real variable: the sine

and cosine, tangent and cotangent, secant and cosecant functions. Trigonometry investigates the

algebraic and graphical behavior of these functions and the interrelations they have with each other.

But it is instructive to be aware that this fundamental group of mathematical functions, vital today

for any scientific study of periodic behavior, had its genesis in the humble problem of telling the time

of day, the most prosaic of periodic phenomena that humans engage with on a daily basis. In an era

when accurate time is crucial for the maintenance of our society, we also find ourselves managing

time in ways that are nearly divorced from connections to the heavens.18

The words tangent and cotangent, secant and cosecant, were not the terms al-B̄ırūn̄ı used for the

elements of the triangles that formed his geometric models of shadows cast by the Sun. Those terms

were coined hundreds of years later, in Europe during the Renaissance. In our next and final episode

of this series, we shall see how trigonometry finally came down to earth in 15th-century Europe, and

how mathematicians began to use it in matters having nothing to do with astronomy.
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Notes to Instructors

This project is the fifth in a collection of six curricular units drawn from a Primary Source Project

(PSP) titled A Genetic Context for Understanding the Trigonometric Functions. The full project is

designed to serve students as an introduction to the study of trigonometry by providing a context for

the basic ideas contained in the subject and hinting at its long history and ancient pedigree among

the mathematical sciences. Each of the individual units in that PSP looks at one of the following

specific aspects of the development of the mathematical science of trigonometry:

• the emergence of sexagesimal numeration in ancient Babylonian culture, developed in the

service of a nascent science of astronomy;

• a modern reconstruction (as laid out in [Van Brummelen, 2009]) of a lost table of chords known

to have been compiled by the Greek mathematician-astronomer Hipparchus of Rhodes (second

century, BCE);

• a brief selection from Claudius Ptolemy’s Almagest (second century, CE) [Toomer, 1998], in

which the author (Ptolemy) showed how a table of chords can be used to monitor the motion

of the Sun in the daytime sky for the purpose of telling the time of day;

• a few lines of Vedic verse by the Hindu scholar Varāhamihira (sixth century, CE) [Neugebauer

and Pingree, 1970/1972], containing the “recipe” for a table of sines as well as some of the

methods used for its construction;

• passages from The Exhaustive Treatise on Shadows [al-B̄ırūn̄ı, 1021; 1976], written in Arabic

in the year 1021 by Abū Rayh. ān Muh.ammad ibn Ah.mad al-B̄ırūn̄ı, which include precursors

to the modern trigonometric tangent, cotangent, secant, and cosecant;

• excerpts from Regiomontanus’ On Triangles (1464) [Hughes, 1967], the first systematic work

on trigonometry published in the West.

This collection of units is not meant to substitute for a full course in trigonometry, as many stan-

dard topics are not treated here. Rather, it is the author’s intent to show students that trigonometry

is a subject worthy of study by virtue of the compelling importance of the problems it was invented

to address in basic astronomy in the ancient world. Each unit may be incorporated, either indi-

vidually or in various combinations, into a standard course in College Algebra with Trigonometry,

a stand-alone Trigonometry course, or a Precalculus course. These lessons have also been used in

courses on the history of mathematics and as part of a capstone experience for pre-service secondary

mathematics teachers.

In this unit, students are introduced to the genesis of the trigonometric quantities tangent,

cotangent, secant and cosecant in the context of timekeeping by the Sun in an 11th-century work

of al-B̄ırūn̄ı (973–1048) called The Exhaustive Treatise on Shadows [al-B̄ırūn̄ı, 1021; 1976]. Using

simple geometric diagrams, al-B̄ırūn̄ı models shadows cast by a straight gnomon as the Sun travels

in its circular path across the sky around the tip of the gnomon, creating a shadow in the shape of a

right triangle. If the gnomon is vertical in the ground, al-B̄ırūn̄ı calls it a direct shadow, whereas if the

gnomon is horizontally mounted on a vertical wall, he calls it a reversed shadow. When the gnomon

is vertical, the line in the model corresponding to the edge of the shadow on the ground is the genesis

of the cotangent of the arc of the elevation of the Sun; similarly, when the gnomon is horizontal, the
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line corresponding to the edge of the shadow on the wall becomes the tangent of the same arc. The

corresponding hypotenuses of these right triangles form the cosecant and secant, respectively, of the

arc. Students will contend with al-B̄ırūn̄ı’s choice not to set the radius of the underlying circle equal

to the length of the gnomon, which helps them to better appreciate that doing so simplifies matters

considerably and leads to the modern conventions concerning these trigonometric quantities.

Examples of how al-B̄ırūn̄ı may have used this trigonometry to deal with the practical use of

a shadow-casting clock are included throughout so that the mathematics is never too far from the

astronomical context in which it arose.

Student Prerequisites

Very little mathematical machinery is needed to work this PSP. But it would help for students to

have been exposed to sexagesimal numeration (to handle the arithmetic of angle measures in degrees

and minutes) and to a reasonably good high school geometry course, especially with regard to the

geometry of the circle and the measure of arcs and angles. A simple introduction to sexagesimal

numeration is provided by the first episode in this series, “Babylonian Astronomy and Sexagesimal

Numeration,” and a presentation of the geometry of the circle and the measure of arcs and angles that

serve as the foundation of trigonometry will be obtained by working the second episode, “Hipparchus’

Table of Chords.” A familiarity with some basic astronomy can also be helpful, and the third episode,

“Ptolemy Finds High Noon in Chords of Circles,” addresses this. Finally, an introduction to the

sine of an arc, which is the launching point for this project, can be found in the fourth episode,

“Varāhamihira and the Poetry of Sines.” Nonetheless, it should be possible for an interested student

to successfully tackle this project with not much more than the brief introduction to the definition

of the sine of an arc that is provided at the end of Section 3.

Suggestions for Classroom Implementation

This project can be implemented in two 50-minute class periods. (There is rather too much to do

to expect that it can also be accomplished in a single 75-minute period, so instructors who teach

twice a week will need to adapt what is described here to a two-75-minute-period schedule.) For a

detailed plan for how to structure the periods, one that suggests preparatory reading, activities for

the classroom, and a minimal collection of Tasks whose solutions should be written up for homework,

see the next subsection below.

The critical experiences in this project occur in Tasks 8 through 11, where students should be

making the connections between the segments in the diagrams that describe al-B̄ırūn̄ı’s direct and

reversed shadows and the four new trigonometric quantities (tangent, cotangent, secant, cosecant).

A possible hurdle will likely come in the final Task, as the student will have to negotiate hybrid

sexagesimal numeration in al-B̄ırūn̄ı’s z̄ıj to complete the necessary computations. Instructors who

choose to do so may also omit that particular Task, as well as the entire Section 5 (A Table of

His Own) in which it appears. Site testers who have opted to assign this (relatively short) section,

however, report that their students have benefited from seeing the level of accuracy that can be

obtained without computers or calculators, which in turn often leads to a “wow!” moment that

increases their appreciation of mathematics.
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Sample Implementation Schedule (based on two 50-minute class periods)

In preparation for the first class period, students should be asked to read through Task 4 of the

project and bring to class their responses for Tasks 1-4. Inform students that it is not expected that

everything they read will make sense to them immediately, and that classroom discussion should

help to clear up any difficulties they encounter. The first class can begin with such discussion, but

an effort should be made to move quickly to getting students working in small groups through the

remainder of Section 3, focusing on working the exercises presented in Tasks 5-11. The technical

issues involved in Tasks 5 and 10 are thorny enough that these should be given highest priority for

public consideration during that class period. For homework, ask students to formally write up Tasks

7, 9 and 11.

To prepare for the second class period, have students read the beginning of Section 4, through

Task 12, and bring their answers to part (a) of this Task to class. In class, after discussing students’

responses to Task 12(a), set students to work in their groups to work through the rest of this and

the next section, focusing on completion of Tasks 12 and 14. For homework, assign formal solutions

to be submitted for these same two Tasks, along with Task 17 (and for a special challenge, include

Task 18). Ask students to read the concluding Section 6 as a follow-up assignment, if time does not

permit this to be done during the second class period.

LATEX code of this entire PSP is available from the author by request to facilitate implementation.

The PSP itself may also be modified by instructors as desired to better suit the goals for their course.

Recommendations for Further Reading

Instructors who want to learn more about the history of trigonometry are recommended to consult

Glen Van Brummelen’s masterful The Mathematics of the Heavens and the Earth: The early history

of trigonometry [Van Brummelen, 2009], from which much of this work took inspiration.
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