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Euler’s Calculation

of the Sum of the Reciprocals of the Squares

Kenneth M Monks ∗

January 30, 2022

A central theme of most second-semester calculus courses is that of infinite series. Simply put,

to study infinite series is to attempt to answer the following question:

What happens if you add up infinitely many numbers?

How much sense humankind made of this question at different points throughout history depended

enormously on what exactly those numbers being summed were. As far back as the third century bce,

Greek mathematician and engineer Archimedes (287 bce–212 bce) used his method of exhaustion

to carry out computations equivalent to the evaluation of an infinite geometric series in his work

Quadrature of the Parabola (Archimedes, 1897). Far more difficult than geometric series are p-series:

series of the form
∞∑
n=1

1

np
= 1 +

1

2p
+

1

3p
+

1

4p
+ · · ·

for a real number p. Here we show the history of just two such series. In Section 1, we warm up with

Nicole Oresme’s treatment of the harmonic series, the p = 1 case.1 This will lessen the likelihood

that we pull a muscle during our more intense Section 3 excursion: Euler’s incredibly clever method

for evaluating the p = 2 case.

1 Oresme and the Harmonic Series

In roughly the year 1350 ce, a University of Paris scholar named Nicole Oresme2 (1323 ce–1382 ce)

proved that the harmonic series does not sum to any finite value (Oresme, 1360). Today, we would

say the series diverges and that

1 +
1

2
+

1

3
+

1

4
+ · · · =∞.

His argument was brief and beautiful! Let us admire it below.

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

∗Department of Mathematics, Front Range Community College – Boulder County Campus, Longmont, CO 80537;
kenneth.monks@frontrange.edu.

1The harmonic mean of two numbers a and b is the quantity 2/(1/a+ 1/b). Thus, in the harmonic series, each term
is the harmonic mean of the term to its left and the term to its right, much like the terms of an arithmetic series or
geometric series, mutatis mutandis.

2Nicole Oresme was an early Renaissance scholar who had a significant hand in reviving the works of antiquity. For
instance, he translated Aristotle’s Ethics, Politics, and On the Heavens from Latin into French. The work here stems
from Oresme’s study of Euclid’s Elements (O’Connor and Robertson, 2003).
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When quantities with unequal proportions (which are less than one) are added to some value,

it is still possible that the sum will be infinite. But if it is that each term is proportional to

the previous, the sum will be finite, . . .

For example: if it we start with a measure of a foot, to which we first add a smaller portion

(half a foot), then a third, and then a fourth, then a fifth and so on forever through all the

numbers in order, I say that the sum will be infinite.

We shall see this as follows: if there exist infinitely many parts, each of which is longer than

half a foot, then the total will be infinite. As is well known, 1/4 and 1/3 are more than a

half; similarly, [the sum of] 1/5 through 1/8, and 1/9 through 1/16, etc. to infinity.3

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

Task 1 Pay special attention to Oresme’s claim that “if it is that each term is proportional to the previous,

the sum will be finite,” What kind of series was he talking about? Why must such a series have

a finite sum?

Task 2 Since the question had been settled for series in which pairs of consecutive terms had equal

proportions, Oresme then looked at a series with unequal proportions: the sum of reciprocals

of the positive natural numbers. Let us examine Oresme’s argument in more modern form. In

particular, define

an =
1

n

to be the sequence of reciprocals and

An =

n∑
k=1

ak

to be the corresponding sequence of partial sums.

(a) Explain why 1/3 + 1/4 is greater than 1/2 as claimed without actually calculating the

sum of those two fractions. Rather, use the fact that 1/3 > 1/4 and think about what

would happen if you substituted 1/4 for the 1/3 in the sum 1/3 + 1/4.

(b) In a similar manner, explain why 1/5 + 1/6 + 1/7 + 1/8 is greater than 1/2. Use the fact

that each of the fractions 1/5, 1/6, and 1/7 are greater than 1/8.

(c) Extend this argument to explain why 1/9 + 1/10 + · · ·+ 1/16 is greater than 1/2.

(d) Explain why
2n+1∑

k=2n+1

1

k
>

1

2

for all natural numbers n. As a hint, it may be helpful to expand the summation on the

left-hand side for a few different particular values of n. For example, try n = 2 and n = 3.

This will help build an intuition for what terms exactly are in that sum.

3The original Latin of the excerpt here is taken from pages 105 and 106 of Quaestiones super Geometriam Euclidis
(Oresme, 1360). Many thanks to Dominic Klyve (dominic.klyve@cwu.edu) for providing the translation.
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(e) Use the above inequality to show that

A2n >
n

2

for all natural numbers n.

(f) Consider Oresme’s statement “if there exist infinitely many parts, each of which is longer

than half a foot, then the total will be infinite.” Why does the inequality A2n >
n
2 justify

his claim?

(g) A standard modern approach for analyzing the convergence/divergence of an infinite series

is the integral test. Apply the integral test to the harmonic series. Does the conclusion

agree with Oresme’s?

2 The Sum of the Reciprocals of the Squares

A natural follow-up is to consider the sum of the reciprocals of squares! After all, a positive number

less than 1 becomes smaller if you square the value; perhaps their sum could converge to a finite

value even though the harmonic series diverges. Many mathematicians of the early 18th century

attempted to compute this sum, written as

1 +
1

22
+

1

32
+

1

42
+ · · · = 1 +

1

4
+

1

9
+

1

16
+ · · · .

Task 3 Is the above summation even worth considering?

(a) Write the summation above in sigma notation.

(b) Use the integral test for convergence of an infinite series to conclude that it does in fact

converge to a real number.

In the seventeenth century, a pair of mathematical brothers, Jacob (1655–1705) and Johann

Bernoulli4 (1667–1748), began to study this series. In 1689, in his Tractatus de seriebus infinitis,

Jacob was able to prove the above series converged to a number less than 2 (Bernoulli, 1713).

However, the exact value of this series eluded the brothers. The solution was presented to the

St. Petersburg Academy in 1735 by a brilliant former student of Johann named Leonhard Euler.5

4The Bernoulli brothers were born into a successful Calvinist spice merchant family in Basel, Switzerland. The
parents pushed Jacob into studying theology and philosophy. He defied them and switched to mathematics and
astronomy later in life against their wishes. The parents then tried to push Johann into taking over the spice business;
he despised this work and instead decided to follow his older brother into mathematics (O’Connor and Robertson,
1998a).

5Johann Bernoulli mentored a young Euler in his early days of mathematical studies. In his autobiography, Euler
wrote, “In 1720, I was admitted to the university as a public student, where I soon found the opportunity to become
acquainted with the famous professor Johann Bernoulli, who made it a special pleasure for himself to help me along in the
mathematical sciences . . . which consisted in myself taking a look at some of the more difficult mathematical books and work
through them with great diligence, and should I encounter some objections or difficulties, he offered me free access to him
every Saturday afternoon, and he was gracious enough to comment on the collected difficulties, which was done with such a
desired advantage that, when he resolved one of my objections, ten others at once disappeared, which certainly is the best
method of making auspicious progress in the mathematical sciences.” (Fellman, 2007, page 5)
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3 Euler’s Proof

At age 28, Leonhard Euler6 (1707–1783) found the exact value of the sum! We now trace through his

argument as it first appeared in print, in the 1740 paper De Summis Serierum Reciprocarum (Euler,

1740). It was published in the Commentarii academiae scientiarum imperialis Petropolitanae (Mem-

oirs of the Imperial Academy of Sciences in St. Petersburg), the first journal of the St. Petersburg

Academy of Science. It is worth noting, however, that the work was read to the academy five years

earlier. Here we use Jordan Bell’s translation (Euler, 2005).7 As Oresme’s work showed, the sums

of reciprocals had been studied for hundreds of years at that point. Thus, Euler opened with the

following remark.

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

§.1. So much work has been done on the series of the reciprocals of powers of the natural

numbers, that it seems hardly likely to be able to discover anything new about them.

. . .

§.2. I have recently found, quite unexpectedly, an elegant expression for the sum of this series

1 +
1

4
+

1

9
+

1

16
+ etc.,

which depends on the quadrature of the circle. . . .

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

Task 4 These days the word “quadrature” is often used interchangeably with the word “area” based

on the ancient Greeks’ perspective wherein finding the area of a region was accomplished by

constructing a square (quadrilateral) that had the same area. According to Euler’s statements

above, on which famous constant will the summation depend?

Euler proceeded to state the relationship between the measure of an arc s on the unit circle and

the sine of s, which he called y. Note that we typically refer to the input of sine as an angle rather

than as an arc. On the unit circle, the radian measure of a central angle equals the length of the

corresponding arc, since the unit circle would have a full circumference of 2π. Thus, radian measure

of a central angle and the corresponding arc on the unit circle are in fact interchangeable.

6Leonhard Euler was born in Basel, Switzerland to Marguerite (née Brucker) and Paul Euler, a Protestant minister
who had attended Johann Bernoulli’s lectures at University of Basel. Paul wished for his son to follow him into the
ministry, but Johann persuaded Paul to allow Leonhard to study mathematics instead after witnessing his incredible
potential for mathematics. The fact that the mathematicians who studied the evaluation of the sum of the reciprocals of
the squares came from Basel has led to the problem being referred to as The Basel Problem. (O’Connor and Robertson,
1998b)

7The Mathematical Association of America hosts an incredible digital library known as The Euler Archive. This
archive links to not only to the translation we use here, but to a massive quantity of Euler’s writing, translated into
many languages. Find it at eulerarchive.maa.org.
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∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

§.4. The first equation

y = s− s3

1 · 2 · 3
+

s5

1 · 2 · 3 · 4 · 5
− s7

1 · 2 · 3 · 4 · 5 · 6 · 7
+ etc.

thus expresses a relation between the arc and sine. For from it, from a given arc its sine can

be determined, and likewise for a given sine the arc.

. . .

§.16. Now, if we let y = 0, the fundamental equation becomes

0 = s− s3

1 · 2 · 3
+

s5

1 · 2 · 3 · 4 · 5
− s7

1 · 2 · 3 · 4 · 5 · 6 · 7
+ etc.,

and the roots of this equation give all the arcs whose sine is = 0. There is one minimal root

s = 0, so that when the equation is divided by s it exhibits all the remaining arcs whose sine

is = 0, so that these arcs are all the roots of the equation

0 = 1− s2

1 · 2 · 3
+

s4

1 · 2 · 3 · 4 · 5
− s6

1 · 2 · 3 · 4 · 5 · 6 · 7
+ etc.

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

Task 5 Euler discarded the root s = 0 in his work above. Let us examine his decision to do so in a bit

more modern notation.

(a) Consider the function f(s) = sin(s)
s . What is the domain of f?

(b) Where is f discontinuous? Does the graph of f have any vertical asymptotes? Why or

why not?

(c) Recall from your first-semester calculus course your strategies for evaluating limits; often

when division by zero was encountered, a good strategy for removing that discontinuity

was to factor the numerator and reduce the fraction. Take the function f(s) = sin(s)
s

and rewrite the numerator as a power series centered at zero. Replicate this “factor and

cancel” trick to remove the discontinuity. That is, calculate

lim
s→0

sin(s)

s

not by using L’Hôspital’s Rule or a special limit identity, but rather by using the power

series for sine as Euler did!
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∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

§.16. Of course these arcs whose sine is = 0 are

p,−p, 2p,−2p, 3p,−3p, etc.,

of which the second of each pair is negative, which the equation itself also tells us, because

the dimensions of s are even.

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

Task 6 (a) Based on knowing the zeros of the sine function, what number would you guess Euler was

talking about when he uses the symbol p above?

(b) In §.11. of the same document, Euler introduced the symbol p in the phrase “where p

denotes the total perimeter of a circle whose diameter is = 1.” What does this phrase imply

the value of p is? Does it agree with your conclusion from part (a)?

(c) Why are these the zeros of the function 1− s2

1·2·3 + s4

1·2·3·4·5−
s6

1·2·3·4·5·6·7 + · · · , as he claimed?

(d) Why is the number 0 not on Euler’s list of arcs? Isn’t the sine of 0 equal to 0?

Euler concluded §.16. with a very familiar task, polynomial factorization, presented in a somewhat

unfamiliar way.

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

Hence the divisors of this equation will be

1− s

p
, 1 +

s

p
, 1− s

2p
, 1 +

s

2p
, etc.

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

What is happening here is may look odd at first, but it is really just a slightly rewritten version

of the Factor Theorem from any introductory algebra class. We usually state the Factor Theorem

as follows:

Familiar Factor Theorem. A polynomial f(x) has a root x = r if and only if it is divisible by

(x− r).

But, one could take the divisor (x − r) and factor out the constant −r, producing instead the

expression

(x− r) = −r
(
x

−r
+ 1

)
= −r

(
1− x

r

)
.

6



Factoring out the constant −r does not affect the divisibility of those polynomials; the polynomial

f(x) is divisible by (x − r) if and only if it is divisible by
(
1− x

r

)
. Thus, an equivalent but funky

restatement of the Familiar Factor Theorem would be this:

Funky Factor Theorem. A polynomial f(x) has a root x = r if and only if it is divisible by(
1− x

r

)
.

Why have two versions of the same theorem? Well, the first version is very convenient if the lead-

ing coefficient of the polynomial is 1. If f(x) has roots r1, r2, . . . , rn, then the following factorization

will hold:

f(x) = (x− r1) (x− r2) · · · (x− rn)

since upon expansion, the right-hand side will have leading term xn and thus a leading coefficient of

1. However, instead of having a leading coefficient of 1, suppose f(x) has a constant term of 1. In

this case, the Funky Factor Theorem is more convenient! In particular, it tells us

f(x) =

(
1− x

r1

)(
1− x

r2

)
· · ·
(

1− x

rn

)
.

This works because when the above product is multiplied out, the constant term is 1. For fear of a

relatively simple idea being obfuscated by formalism, we work out a small concrete example.

Task 7 (a) Factor the polynomial x2 − x− 6. What are the roots? Call these numbers r1 and r2.

(b) Show that the polynomial 1 + 1
6x−

1
6x

2 (which is the same quadratic, just divided by −6)

has the same roots as the previous polynomial by just plugging in r1 and r2 for x and

verifying the output is zero in each case. Use these roots to factor 1 + 1
6x−

1
6x

2 into the

form
(

1− x
r1

)(
1− x

r2

)
.

(c) In each case, multiply out your factorization to see that it is correct.

Task 8 Let us now revisit Euler’s statement in which he claimed to know “the divisors of this equation”.

(a) We have the polynomial8

1− s2

1 · 2 · 3
+

s4

1 · 2 · 3 · 4 · 5
− s6

1 · 2 · 3 · 4 · 5 · 6 · 7
+ · · ·

that we wish to factor. Which version of the Factor Theorem should we use, the Familiar

or the Funky? Why?

(b) Write out the factorization that this produces, using the roots from Task 6.

Euler proceeded with a simple but clever simplification.

8Technically this is a power series and not a polynomial, since the degree is infinite. However, Euler had great
intuition regarding the generality of the structure of mathematics; he was confident we could factor an infinite degree
polynomial in the same way that we could factor a finite degree polynomial, and proceeded accordingly!
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∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

and by combining each of these pairs of divisors together it will be

1− s2

1 · 2 · 3
+

s4

1 · 2 · 3 · 4 · 5
− s6

1 · 2 · 3 · 4 · 5 · 6 · 7
+ etc.

=

(
1− s2

p2

)(
1− s2

4p2

)(
1− s2

9p2

)(
1− s2

16p2

)
etc.

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

Task 9 (a) Which pairs of divisors did he join together? What famous identity from algebra did Euler

apply to produce that right-hand side?

(b) When you look at those denominators and think about the question we had set out to

answer, do the hairs on the back of your neck tingle a little? If not, remind yourself what

it is exactly that we are trying to evaluate, and then see if they do.

Euler only stated his next step in words; we will carry out the corresponding algebra.

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

§.17. Now it is evident from the nature of the equations, that the coefficient of ss, or 1
1·2·3 ,

is equal to
1

p2
+

1

4p2
+

1

9p2
+

1

16p2
+ etc.

. . .

§.18. Hence from these the following sums are thus derived:

1 +
1

4
+

1

9
+

1

16
+ etc. =

p2

6
.

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

Task 10 Let us retrace the algebra that Euler glossed over above.

(a) Take Euler’s infinite factorization from before,

1− s2

3!
+
s4

5!
− s6

7!
+ · · · =

(
1− s2

p2

)(
1− s2

4p2

)(
1− s2

9p2

)(
1− s2

16p2

)
· · · ,

and begin to multiply out the right-hand side. Specifically, calculate the constant term as

well as the coefficients of s and s2.

8



(b) Set the degree two coefficient of the right-hand side equal to the degree two coefficient of

the left-hand side.9

(c) Multiply both sides by p2 and declare victory!

4 Epilogue

In the same paper, Euler provided a method to extend this technique to any even power and executed

the method up to exponent 12 in §.18. Just for fun, here are the values!

∞∑
n=1

1

n2
=
π2

6

∞∑
n=1

1

n4
=
π4

90

∞∑
n=1

1

n6
=

π6

945

∞∑
n=1

1

n8
=

π8

9450

∞∑
n=1

1

n10
=

π10

93555

∞∑
n=1

1

n12
=

691π12

638512875

With slightly different techniques, Euler proceeded to publish the values of the even-powered sums

up to exponent 26 in his 1748 Introductio in Analysin Infinitorum, Volume 1 (Euler, 1748, page 131).

It is also worth noting that besides the harmonic series, no one has ever computed the sum for a

single odd power! For instance, there has been little progress in understanding the sum of reciprocals

of the cubes. The number
∞∑
n=1

1

n3

is known as Apéry’s constant. In 1979, Roger Apéry (1916–1994) published a proof that it is irra-

tional, (Apéry, 1979) meaning that it cannot be expressed as a ratio of integers. However, it is still

unknown whether or not that value is transcendental ! That is to say, in theory, there could be some

polynomial equation with integer coefficients which has Apéry’s constant as a root.

9Euler did not worry about convergence of this power series or of this infinite product. He never tried to plug
in any values for s, so issues of convergence are, in a certain sense, irrelevant! Rather, he is interested in extracting
information by studying the coefficients of the power series. This approach has been developed into a theory that we
today call generating functions. In this discipline, one treats power series as formal algebraic objects (which in this
context get called generating functions) in order to extract information about the coefficients. In Herbert Wilf’s classic
text generatingfunctionology (Wilf, 2005), he starts the first page of the first chapter by saying “A generating function
is a clothesline on which we hang up a sequence of numbers for display.” This is exactly the perspective Euler took here.
In this work, he never used the power series for sin(s)

s
to calculate values of that function for numerical values of s.

Rather, he expressed the degree two coefficient of that power series in two different ways and equated the expressions.

9



Task 11 In light of what you just read about Apéry’s constant, what is ironic about Euler’s opening

statement?
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Notes to Instructors

PSP Content: Topics and Goals

This PSP is intended to enrich a second-semester Calculus student’s grasp on infinite series and

power series manipulations. Often in introductory calculus courses, the only means demonstrated

for evaluating an infinite series is to take a known power series (perhaps slightly rearranged) and plug

in an x-value from the interval of convergence. This project aims to broaden a student’s perspective

on the ways infinite series can be handled and the ways power series can be used. The key Calculus

II competencies which come up in this project are as follows:

• Definition of the geometric series and geometric series formula

• Integral test for convergence of an infinite series

• Infinite series defined as the limit of a sequence of partial sums

• The harmonic series/p-series

• Direct Comparison Test

• Power series of sine

• Algebraic manipulations of power series

• Equating coefficients of corresponding degree in two equal power series (similar to how one

solves differential equations via power series)

Student Prerequisites

The student should be familiar with (but maybe has not yet completely mastered) the topics listed

above. In particular, the standard series convergence tests and the power series for sine are used heav-

ily throughout this project. Nothing else in particular is required beyond the standard prerequisite

skills for a second-semester calculus course.

PSP Design, and Task Commentary

Tasks 7 and 8 may seem to be belaboring something trivial. However, from personal experience

implementing this project, the author can say that the “1 − x/root” factorization was consistently

the part of this project that the students had the hardest time understanding each semester. The

students became much more comfortable with Euler’s factorization after seeing it in the easier case

laid out in those tasks.

Suggestions for Classroom Implementation

This would certainly pair well with a discussion of Archimedes’ Quadrature of the Parabola. Showing

Archimedes’ classic decomposition of a unit square (shown below) and using it to evaluate the

geometric series
1

4
+

1

16
+

1

64
+ · · · = 1

3
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could be a great warmup for this PSP, as Oresme begins by referencing geometric series. (Note

that the diagram below demonstrates this summation as a result of the black squares collectively

occupying exactly one-third of the area of the large square of area 1.)

Sample Implementation Schedule (based on a 50-minute class period)

If an in-class activity was desired, the following would be a reasonable breakdown:

• 10 minutes: Show image of square above; discuss how this relates to Archimedes’ evaluation of

a geometric series.

• 30 minutes: Hand out the PSP and allow students to work in groups on the PSP.

• 10 minutes: Point out a few common errors or misconceptions you noticed as you were walking

around helping the student groups.

Completed writeup of the PSP can be due the following week.

The author, however, does not implement this PSP in that manner. Rather, the author uses

this as one of a choice of projects. A small group of students (perhaps 2–3) could have time in

class one session to prepare solutions and time in class another session to present solutions in a

miniconference. Ideally, other groups of students would be following the same process for different

projects. To this end, the author has used the TRIUMPHS mini-PSPs M24 Euler’s Rediscovery of

e by David Ruch and M15 Gaussian Guesswork: Infinite Sequences and the Arithmetic-Geometric

Mean by Janet H. Barnett. Copies of these PSPs are available at the TRIUMPHS website (see URL

in the acknowledgements). Five further projects (without primary sources) appropriate for further

study of power series in a second-semester calculus course are available upon request from the author.
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The author is happy to provide LATEX code for this project. It was created using Overleaf which

makes it convenient to copy and share projects and can allow instructors to adapt this project in

whole or in part as they like for their course.

Recommendations for Further Reading

As an epilogue, instructors may choose to share the current state of the Riemann Hypothesis with

their students. In the PSP itself, we end with the mystery surrounding Apéry’s constant to show

just how much research is still happening regarding sums of powers of reciprocals. However, showing

the students that there is a Clay Mathematics Institute Millenium Prize Problem with a one million

dollar bounty on it might be even more exciting to the students. Or, perhaps instructors would

prefer to not announce this themselves, but rather direct their students to the site

http://www.claymath.org/millennium-problems/riemann-hypothesis

for a short followup reading assignment.

If the student wishes to read another treatment of Euler’s work shown here (along with much

exciting work from the Bernoullis and others), William Dunham’s Journey Through Genius: The

Great Theorems of Mathematics is recommended. A detailed path from Euler’s work to the Riemann

zeta function is given in Mathematical Masterpieces: Further Chronicles by the Explorers by Art

Knoebel, Reinhard Laubenbacher, Jerry Lodder, and David Pengelley.

Students who are excited by Euler’s clever use of power series may enjoy further study in gener-

ating functions. This is often a part of junior or senior level combinatorics classes. Also, the author

has led independent study classes on Herbert Wilf’s classic generatingfunctionology to sophomore

level students. It is the perfect reader course for a student who does not have much experience with

proof-writing but who loved Euler’s manipulations in this PSP and wants more!
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