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Fourier’s Heat Equation and the Birth of Fourier Series

Kenneth M Monks ∗

February 7, 2022

It is often said that Joseph Fourier gave birth to modern climate science. His 1827 paper “Mémoire

sur les Températures du Globe Terrestre et des Espaces Planétaires” (translated to English as “On

the Temperatures of the Terrestrial Sphere and Interplanetary Space” in [Pierrehumbert, 2004]),

contained the following very influential passage:

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

The Earth is heated by solar radiation . . . Our solar system is located in a region of

the universe of which all points have a common and constant temperature, determined by

the light rays and the heat sent by all the surrounding stars. This cold temperature of the

interplanetary sky is slightly below that of the Earth’s polar regions. The Earth would have

none other than this same temperature of the Sky, were it not for . . . causes which act . . . to

further heat it.

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

The above passage is widely considered to be the first demonstration of the existence of the greenhouse

effect. Fourier’s claim was far from speculative; rather, it was based on his groundbreaking study of

heat published five years earlier, Théorie analytique de la chaleur (The Analytical Theory of Heat)

[Fourier, 1822]. The goal of this project is to give the reader an insight into the techniques Fourier

employed therein, as they have become the basis of modern thermodynamics as well as enormously

consequential in mathematics itself. In particular, this project tells the following story:

• Section 1. We see what Fourier’s starting assumptions were for his heat investigation.

• Section 2. We retrace one of Fourier’s primary examples: determining the temperature of

a square prism of infinite length. Part of the way through, we find that Fourier snapped his

fingers and solved a differential equation in just one step.

• Section 3. The magical incantation that Fourier used to solve his differential equation was

some old magic due to Leonhard Euler (1707–1783). In this section, we read this technique in

Euler’s own words.

• Section 4. We return to the infinite square prism problem and apply Euler’s work to solve it.

∗Department of Mathematics, Front Range Community College – Boulder County Campus, Longmont, CO 80537;

kenneth.monks@frontrange.edu.
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• Section 5. We present Fourier’s more general heat equation. Note that we do not present the

full derivation of this equation (which is in The Analytical Theory of Heat, Chapter II, Section

V, for interested readers) but rather offer just an intuitive explanation.

• Section 6. In this section, we consider Fourier’s solution of the heat problem for an infinite

rectangular solid—a geometric object that seems only slightly more complicated than a square

prism of infinite length, but for which the century-old algorithm handed to him by Euler

couldn’t simply be applied. Instead Fourier’s work took a very surprising turn and he invented

a whole new theory of infinite series, now called Fourier series. In a way, these series are similar

to power series, in which one writes a function as a sum of powers of x; what is different in

his series is that Fourier instead used sums of cosines of varying frequency (and in the modern

theory typically a mix of sines and cosines are used).

• Section 7. Fourier paused for a while to simply play with his new toy, Fourier series, before

returning to the study of heat. In this section, we get to be the lucky neighborhood kid next

door whose door got knocked on before the big adventure.

• Section 8. In the last section, we talk through some of the ripple effects of Fourier’s work in

The Analytical Theory of Heat, leading into foundational questions of rigor in analysis.

All primary source excerpts that follow are from the 1878 translation of The Analytical Theory

of Heat by Alexander Freeman,1 with the exception of the Euler excerpts in Section 3.

1 Introducing Fourier and Fourier’s Introduction

Jean-Baptiste Joseph Fourier (1768–1830) was born into a working-class family in Auxerre, France,

but was orphaned in childhood. Luckily, he obtained admission to a local military school, where

he received an education from the Benedictine monks of Saint-Maur. In 1790, they gave him a

mathematics teaching appointment at their school in Auxerre, where he also taught rhetoric, history,

and philosophy. He later became a founding faculty member at the Ècole Polytechnique2 in Paris,

where Napoleon sometimes attended lectures. This led to Napoleon’s request for Fourier’s help in the

administration of Egypt after its occupation by France in 1798. Upon his return to France, Fourier

served as the chief administrator of the region of Isère, where he led extensive infrastructure projects

to quell chronic infections that were emanating from marshes in the area. In 1817, he was elected to

the Académie des Sciences, and five years later he became their perpetual secretary.3

Thus, one can hardly imagine someone with a broader background than Fourier, more uniquely

situated to simultaneously tackle problems of pure thought as well as in the physical world around

him, perhaps in the same stroke of the pen. In the introduction of The Analytical Theory of Heat,

he made no secret about the fact that he intended to do just that, with mathematics as his language

and tool. Of mathematics, he said the following, found in [Fourier, 1822, pp. 7–8].

1Alexander Freeman (1838–1897) was born in Blackheath, Surrey, England. He was an astronomer and mathematics
teacher. In addition to providing the English translation of Fourier’s work we use here, he was a frequent correspondent
of James Clerk Maxwell (1831–1879), the creator of the modern theories of electricity and magnetism.

2Founded during the French Revolution in 1794 (the same year as Fourier’s arrest for having defended a member
of a particular political faction) in part by mathematician Gaspard Monge (1746–1818), Ècole Polytechnique remains
one of the most well-respected institutions of mathematics in the world today.

3This title implies being chairperson and chief representative for life, with the option to step down, after which one
becomes known as the honorary perpetual secretary. For more on Fourier’s life, see [O’Connor and Robertson, 1998b].
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∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

Its chief attribute is clearness; it has no marks to express confused notions. It brings

together phenomena most diverse, and discovers the hidden analogies which unite them.

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

Task 1 Do you agree that mathematics has “no marks to express confused notions” as Fourier

claimed? Why or why not? What about his second claim? In your mathematical

studies, where have you witnessed a case in which mathematics was able to express

“hidden analogies which unite” seemingly different phenomena? (Or, if you don’t think

you have witnessed any such case, what do you think Fourier might have meant by

this?)

Fourier also made clear the necessity of looking at heat through a mathematical lens [Fourier,

1822, p. 1].

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

Heat, like gravity, penetrates every substance of the universe, its rays occupy all parts of

space. The object of our work is to set forth the mathematical laws which this element obeys.

The theory of heat will hereafter form one of the most important branches of general physics.

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

He then stated specifically what problem he was trying to solve [Fourier, 1822, p. 14].

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

The problem of the propagation of heat consists in determining what is the temperature

at each point of a body at a given instant, supposing that the initial temperatures are known.

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

Lastly, Fourier laid out some starting assumptions regarding how heat transfer can be modeled

(and commented that his assumptions were verified by experiment and observation). His primary

assumption is often referred to today as Newton’s Law of Cooling or the first law of thermodynamics,

which loosely says that the rate of transfer of heat between two objects will be proportional to the

difference in temperature between the two objects. Fourier stated this in Section III of his first

chapter, calling it the “Principle of the communication of heat.” In his own words, he said the

following:

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

The action of two molecules, or the quantity of heat which the hottest communicates to

the other, is the difference of the two quantities which they give up to each other.

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞
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Task 2 Have you seen Newton’s Law of Cooling in your previous studies of mathematics

or physics? If so, what kind of functions (i.e., polynomial, rational, etc.) are used

when modeling temperature using Newton’s Law of Cooling? If you haven’t seen it

previously, feel free to look it up in the index of a precalculus textbook or on the

internet.

2 Heating a Square Prism of Infinite Length

Fourier began by studying heat transfer in a figure which has a square base (which he called A) that

then extends from that base in just one direction off to infinity, creating a prism of infinite length.

Although the shape itself is three-dimensional, he here threw away all unknowns except one, in order

to look for a temperature function v(x) where x represents the distance from the square base. As

you read through Fourier’s treatment of this situation, pause to work each of the tasks that appear

between the various excerpts from his work.

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

§73 . . . A metal bar, whose form is that of a rectangular parallelepiped infinite in length,

is exposed to the action of a source of heat which produces a constant temperature at all

points of its extremity A. It is required to determine the fixed temperatures at the different

sections of the bar.

The section perpendicular to the axis is supposed to be a square whose side 2l is so small

that we may without sensible error consider the temperatures to be equal at different points of

the same section. The air in which the bar is placed is maintained at a constant temperature

0, and carried away by a current with uniform velocity.

Within the interior of the solid, heat will pass successively all the parts situated to the

right of the source, and not exposed directly to its action; they will be heated more and more,

but the temperature of each point will not increase beyond a certain limit. This maximum

temperature is not the same for every section; it in general decreases as the distance of the

section from the origin increases: we shall denote by v the fixed temperature of a section

perpendicular to the axis, and situated at a distance x from the origin A.

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

Task 3 There are really four unknowns here: time t and three spatial dimensions x,y, and

z. How did Fourier manage to simplify the situation, resulting in representing the

temperature function v we seek to being a function only of x?

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

Before every point of the solid has attained its highest degree of heat, the system of

temperatures varies continually, and approaches more and more to a fixed state, which is that

which we consider. This final state is kept up of itself when it has once been formed. In

order that the system of temperatures may be permanent, it is necessary that the quantity

of heat which, during a unit of time, crosses a section made at a distance x from the origin,

4



should balance exactly all the heat which, during the same time, escapes through that part

of the external surface of the prism which is situated to the right of the same section. The

lamina whose thickness is dx, and whose external surface is 8ldx, allows the escape into the

air, during a unit of time, of a quantity of heat expressed by 8hlv.dx, h being the measure

of the external conducibility of the prism.4

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

Task 4 Consider the diagram below, of Fourier’s “rectangular parallelepiped infinite in length,”

showing the “source of heat” as the square base on the left along with the “section

made at a distance x from the origin, . . . whose thickness is dx.” Label the diagram with

the measurements Fourier used in the passages above, and use that labeled diagram

to verify his claim that the “external surface is 8ldx.”

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

Hence taking the integral
∫
8hlv.dx from x = 0 to x = ∞, we shall find the quantity of

heat which escapes from the whole surface of the bar during a unit of time; and if we take

the same integral5 from x = 0 to x = x, we shall have the quantity of heat lost through the

part of the surface included between the source of heat and the section made at the distance

x. Denoting the first integral by C, whose value is constant, and the variable value of the

second by
∫
8hlv.dx; the difference C −

∫
8hlv.dx will express the whole quantity of heat

which escapes into the air across the part of the surface situated to the right of the section.

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

Task 5 Why could Fourier consider the first integral to be a constant value C?

4Note that in this time and place, it was fairly common to use a lower dot (period) as a multiplication symbol in
mathematics writing instead of a centered dot as we more often do today.

5What Fourier did here is considered invalid (or at least a very poor choice of notation) today, using the same letter
x both as the independent variable of the function being integrated as well as in the bounds. Today one would replace
the independent variable of the function with some other letter, like τ , and then take the integral from τ = 0 to τ = x.
It may be helpful to think of it this way in the calculations that follow.
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∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

On the other hand, the lamina of the solid, enclosed between two sections infinitely near

at distances x and x + dx, must resemble an infinite solid, bounded by two parallel planes,

subject to fixed temperatures v and v + dv, since, by hypothesis, the temperature does not

vary throughout the whole extent of the name section. The thickness of the solid is dx, and

the area of the section is 4l2: hence the quantity of the heat which flows uniformly, during one

unit of time, across a section of this solid, is, according to the preceding principles, −4l2K dv
dx ,

K being the specific internal conducibility:

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

Task 6 Label the diagram of the prism and section, shown again below. Use it to verify

Fourier’s claim that “the area of the section is 4l2,” as well as the claim that “the

quantity of the heat which flows uniformly, during one unit of time, across a section of this

solid, is . . . −4l2K dv
dx .” (Note the original translation is inconsistent with regards to

the use of capital versus lowercase K; here we have changed them all to capital letters

for readability.)

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

. . . we must therefore have the equation

−4l2K
dv

dx
= C −

∫
8hlv.dx,

whence

Kl
d2v

dx2
= 2hv.

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

Task 7 (a) Where did Fourier’s first equation above come from? He came up with two

formulas that both represent what quantity?

(b) What did Fourier do to get the second equation from the first? (Hint! You will

need to apply a very famous theorem from your first-semester Calculus course in

order to justify that little “whence” that Fourier brushed past!)
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∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

§76. The integral of the preceding equation is

v = Ae
−x

√
2h
lK +Be

+x
√

2h
lK ,

A and B being two arbitrary constants;6 . . . .

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

After he obtained the equation

kl
d2v

dx2
= 2hv, (1)

Fourier solved it without even pausing to take a breath. He showed no work as to how he obtained

the general solution. This was certainly not due to incomplete exposition, however. Rather, it

was because the technique for solving such a differential equation was already quite well-known

in Fourier’s time, having been worked out almost eighty years earlier by none other than the great

Leonhard Euler (1707–1783).7 We take a look at Euler’s solution to this equation in the next section.

3 Euler’s Solution to Linear Homogeneous Constant-Coefficient

Differential Equations

Though much of the groundwork was done in his correspondence with Johann Bernoulli (1667–1748),

Euler’s method for solving such differential equations was fully written up in the paper “De integra-

tione aequationum differentialium altiorum graduum” “On the integration of differential equations

of higher orders” [Euler, 1743]. Here we present selected excerpts which provide just the bit that

Fourier actually used above.8 The first excerpt we show is Euler’s statement of the problem.

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

§28

If a differential equation of order n of this kind was propounded

0 = Ay +B
dy

dx
+ C

ddy

dx2
+D

d3y

dx3
+ · · ·+N

dny

dxn

in which the element dx is put constant, and the letters A,B,C,D, . . . , N denote arbitrary

constant coefficients, to find the integral of this equation in finite real terms.

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

6Be aware that this A is just a generic real number and has nothing to do with the A that represents the plate
serving as origin of the heat. Sometimes, A ̸= A.

7Leonhard Euler was born in Basel, Switzerland to Marguerite (née Brucker) and Paul Euler, a Protestant minister
who had attended Johann Bernoulli’s lectures at University of Basel. Paul wished for his son to follow him into the
ministry, but Johann persuaded Paul to allow Leonhard to study mathematics instead after witnessing his incredible
potential for the subject.

8For a comprehensive treatment, see Adam Parker’s “Leonhard Euler and Johann Bernoulli Solving Homogenous
Higher Order Linear Differential Equations With Constant Coefficients” [Parker, 2020].
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Task 8 Take Fourier’s Equation (1) and write it in the form Euler gives above. What is n?

What are “the letters A,B,C,D, . . . , N” in this instance?

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

§12 . . .9 the following algebraic equation will result

0 = A+Bp+ Cp2 +Dp3 + Ep4 + · · ·+Npn

if from which any value of p is found, one will at the same time have a particular integral

y = epx satisfying the propounded differential equation.

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

In modern differential equations courses, the equation that Euler showed above is typically called

either the characteristic equation or the auxiliary equation. Because of connections to linear algebra

and eigenvalues, typically the symbol λ is used in place of p. Notice what Euler’s writing tells us:

the function y = epx will solve the differential equation in his §28 whenever p is a numerical solution

to the equation shown in §12.

Task 9 (a) Find the characteristic equation corresponding to Fourier’s Equation (1).

(b) What are the values of p that solve this characteristic equation?

(c) Euler claimed that “one will at the same time have a particular integral10 y = epx

satisfying the propounded differential equation.” For each of your values of p,

substitute it into the formula y = epx, and check that it is a valid solution to

Fourier’s Equation (1) as claimed.

Euler then described how to stitch together separate solutions to build a general solution, which

he called “the complete value for y.”

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

§15 Therefore, if all roots of this algebraic equation of order n were real, then the complete

value for y will . . . be the aggregate of n exponential formulas of this kind αepx, . . .11

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

9The reader may wonder why Euler’s §12 showed the method that answered the question asked in his §28. The
answer is simply style! Euler often wrote and published work in an order that showed his messy discovery process of
the results, as opposed to today’s more standard style in which one first states a result and then follows it with the
cleanest possible proof of such a result—rarely how it was happened upon in the first place!

10Note that Euler uses the word “integral” in this context where today we would use the word “solution.” If a
differential equation is of the form y′ = f(x), then the solution of the differential equation and the indefinite integral
of f(x) are one and the same, hence the somewhat interchangeable words.

11The author made a slight change to the translation here, writing αepx where Euler had αeqx:p to make the notation
of Euler’s §12 and §15 consistent with each other.

8



Task 10 Notice that in the passage above, Euler allowed us to attach a constant α to the

front of our exponential function epx (and for exponential functions corresponding to

different values of p, you could have a different constant in front). He also said we

should take the “aggregate of n exponential formulas” to obtain “the complete value for

y.” One can take the word “aggregate” in this context to simply mean “sum.” Verify

that performing these steps results in Fourier’s general solution to Equation (1).

4 Back to the Future12

Having seen where Fourier’s solution of his differential equation (1) came from, we return to his

treatment of heat transfer in a square prism of infinite length, picking up where we left off at the

end of Section 2 of this project.

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

§76. The integral of the preceding equation is

v = Ae
−x

√
2h
lK +Be

+x
√

2h
lK ,

A and B being two arbitrary constants; now, if we suppose the distance x infinite, the value

of the temperature v must be infinitely small; hence the term Be
+x

√
2h
lK does not exist in the

integral: thus the equation v = Ae
−x

√
2h
lK represents the permanent state of the solid; the

temperature at the origin is denoted by the constant A, since that is the value of v when x

is zero.13

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

Task 11 Let us analyze the above passage in modern terminology and notation. Thinking of

v as a function of x, what did Fourier claim about the value of limx→∞ v(x)? What

then does that claim imply about the value of B, and why?

A few sections later in his book, Fourier made the following claims.

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

§80. It is easy to ascertain how much heat flows during a unit of time through a

section of the bar arrived at its fixed state: this quantity is expressed by −4Kl2 dv
dx , or

4A
√
2Khl3.e

−x
√

2h
KL , and if we take its value at the origin, we shall have 4A

√
2Khl3 as

12Though this future is 200 years in the past.
13In this same section of his The Analytic Theory of Heat, Fourier mentioned that this solution was in fact verified

empirically! He wrote the following:

This law according to which the temperatures decrease is the same as that given by experiment; several physicists
have observed the fixed temperatures at different points of a metal bar exposed at its extremity to the constant
action of a source of heat, and they have ascertained that the distances from the origin represent logarithms,
and the temperatures the corresponding numbers.

9



the measure of the quantity of heat which passes from the source into the solid during a unit

of time; thus the expenditure of the source of heat is, all other things being equal, proportional

to the square root of the cube of the thickness.

We should obtain the same result on taking the integral
∫
8hlv.dx from x nothing to x

infinite.

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

Task 12 We proceed to verify Fourier’s claims from the section above.

(a) Take the formula for v established in §76 and substitute it into −4Kl2 dv
dx in order

to verify Fourier’s claim about “how much heat flows during a unit of time through

a section of the bar” as well as “the measure of the quantity of heat which passes

from the source into the solid during a unit of time.”

(b) Take that same formula for v established in §76, and substitute it into the integral∫ x=∞

x=0
8hlv.dx

and verify that we “obtain the same result” as Fourier claimed.

5 Fourier’s Heat Equation

In Section 2 of this project, the differential equation that modeled the given heat problem ended

up being an ordinary differential equation (ODE). It is called “ordinary” because the derivatives

are “ordinary.” That is, it is a differential equation in which the solution is a function of just one

independent variable, and thus all derivatives (be it a first derivative or a higher-order derivative)

are calculated with respect to that one variable. This was possible because the temperature of our

object was really only dependent on how far you were from the heat source, represented by x. Fourier

realized, however, that this would be insufficient for more complicated scenarios, and he proceeded

to introduce partial differential equations, equations in which the solution will be a function of

several independent variables and the derivatives may be taken with respect to any number of those

independent variables.

Chapter II, “Equations of the Movement of Heat,” presented his much-celebrated heat equation:

dv

dt
=

K

CD

(
d2v

dx2
+

d2v

dy2
+

d2v

dz2

)
.

The derivation is based on a simple idea: any change in the temperature of a location with respect

to time (the left-hand side of his equation) must somehow correspond to heat moving in or out of

that location through any one of three directions, x, y, or z (the right-hand side of his equation).

The quantities K,C, and D represent properties of the material being studied.

6 Heating an Infinite Rectangular Solid

In Chapter III, “Propagation of Heat in an Infinite Rectangular Solid,” his work took a surprising turn.

Solving the heat problem in this “infinite rectangular solid,” which in terms of a geometric object

10



seems only slightly more complicated, did not amount to simply applying a century-old algorithm

handed to him by Euler. Rather, he invented a whole new theory, Fourier series, in order to study

this shape. Loosely speaking, it is the idea of constructing infinite series built out of trigonometric

functions.14 We shall see in the following passage how and why Fourier constructed these!

Note that in the passage below, one may imagine an x, y, and z axis in three-dimensional space.

The line of intersection of planes A and B is parallel to the z-axis (and similarly the line of intersection

of planes A and C). Thus, the figure is completely uniform in the z direction, hence Fourier’s remark

that “abstraction is made of the co-ordinate z,” essentially meaning that you can draw just one

two-dimensional slice of the region (that slice being perpendicular to the z-axis) and have all the

information you need.

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

§164 Suppose a homogeneous solid mass to be contained between two planes B and C

vertical, parallel, and infinite, and to be divided into two parts by a plane A perpendicular to

the other two . . . ; we proceed to consider the temperatures of the mass BAC bounded by

the three infinite planes A, B, C. The other part B′AC ′ of the infinite solid is supposed to

be a constant source of heat, that is to say, all its points are maintained at the temperature

1, which cannot alter. The two lateral solids bounded, one by the plane C and the plane A

produced, the other by the plane B and the plane A produced, have at all points constant

temperature 0, some external cause maintaining them always at that temperature; lastly, the

molecules of the solid bounded by A,B and C have the initial temperature 0. Heat will

pass continually from the source A into the solid BAC, and will be propagated there in

the longitudinal direction, which is infinite, and at the same time will turn towards the cool

masses B and C, which will absorb a large part of it. The temperatures of the solid BAC

will be raised gradually: but will not be able to surpass nor even to attain a maximum of

temperature, which is different for different points of the mass. It is required to determine

the final and constant state to which the variable state continually approaches.

If this final state were known, and were then formed, it would subsist of itself, and this

is the property which distinguishes it from all other states. Thus the actual problem consists

in determining the permanent temperatures of an infinite rectangular solid, bounded by two

masses of ice B and C, and a mass of boiling water A; the consideration of such simple and

14It should be noted that Fourier was not the first to construct an infinite series out of trigonometric functions. The
first such example actually appeared in 1744 in a letter from Euler to the German mathematician and lawyer Christian
Goldbach (1690–1764). In English translation [Lemmermeyer and Mattmüller, 2015, p. 834], Euler wrote

§I. Given an arbitrary arc a of a circle, let its sine be = α, the sine of the double arc be = β, the sine of the
triple arc = γ, the sine of the quadruple = δ, of the quintuple = ϵ, and so on: I say that the sum of the infinite
series

1

2
a+ α+

1

2
β +

1

3
γ +

1

4
δ +

1

5
ϵ+ · · ·

always expresses the length of an arc of 90◦ in the same circle.

Why then, one may ask, are these called Fourier series and not Euler series? Well, on one hand Euler did an unbelievable
amount of work with infinite series, so it would be hard to name any one particular type after him. But perhaps the
better reason is that Euler’s perspective was quite different: he presented this trigonometric series as subdivisions of
an arc of a circle into chords. Fourier, on the other hand, was thinking of it as it is more often thought of today: one
has a function in mind (in Fourier’s case, the solution to a partial differential equation) which is then expressed as a
summation of trigonometric functions, much as one finds a power series for a function by expressing it as a summation
of powers of the independent variable.

11



primary problems is one of the surest modes of discovering the laws of natural phenomena,

and we see, by the history of the sciences, that every theory has been formed in this manner.

· · ·

It is supposed that there is no loss of heat at the surface of the plate, or, which is the

same thing, we consider a solid formed by superposing an infinite number of plates similar to

the preceding: the straight line Ax which divides the plate into two equal parts is taken as

the axis of x, and the co-ordinates of any point m are x and y; lastly, the width A of the

plate is represented by . . . π, . . . .

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

We now pause the reading of the primary source to draw and label a diagram to illustrate the

region that Fourier described above. Recall that Fourier’s region extends uniformly along the z-axis,

so what we draw below is a representation of a cross section perpendicular to the z-axis. That is,

one may think of this page as the xy-plane, with the z-axis invisible to us, extending vertically from

the paper.

Plane A, Temp 1

Plane B,

Temp 0

Plane C,

Temp 0

Temp v = ϕ(x, y)

Plane B can be represented by the equation y = −π
2 and plane C by y = π

2 . Plane A is given

by x = 0. All three extend indefinitely in the z direction (which again, is perpendicular to the page,

which is why we draw A, B, and C as line segments even though they are planes).

Task 13 Describe, in words, how the shape of the region and the heat sources (described in

the excerpt we’ve just read) for this example differ from the one Fourier considered

in §73 (which we read at the beginning of Section 2 of this project). What different

traits, if any, do you think will make this new problem more or less challenging than

the previous one?

Let’s now go back to reading Fourier. In the passage that follows, he started with his general

heat equation and found that, in this particular example, two of the terms conveniently are zero.

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

Imagine a point . . . of the solid plate BAC, whose co-ordinates are x and y, to have the

actual temperature v, and that the quantities v, which correspond to different points, are

such that no change can happen in the temperatures, provided that the temperature of every

point of the base A is always 1, and that the sides B and C retain at all their points the

temperature 0.

12



§166 To apply the general equation

dv

dt
=

K

CD

(
d2v

dx2
+

d2v

dy2
+

d2v

dz2

)
,

we must consider that, in the case in question, abstraction is made of the co-ordinate z, so

that the term d2v
dz2

must be omitted; with respect to the first member dv
dt , it vanishes, since

we wish to determine the stationary temperatures; thus the equation . . . is the following:15

d2v

dx2
+

d2v

dy2
= 0 . . . . . . . . . . . . (a).

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

Task 14 (a) Explain in words why Fourier claimed “the term d2v
dz2

must be omitted.”

(b) Explain in words why Fourier claimed that dv
dt “vanishes.”

(c) Setting those two terms equal to zero, and conveniently choosing the constants

K = C = D = 1, verify that Fourier’s general heat equation becomes his simpler

equation (a).

Fourier’s equation (a) is what is today called a partial differential equation, in which an unknown

function of several variables is sought, given some relationship between the function and its partial

derivatives. In this case, we wish to find v(x, y), an unknown function of two variables, such that

the sum of the second partial derivatives with respect to x and y is zero. In modern notation, one

typically makes the d “curly” in order to indicate a partial derivative. So, Fourier’s equation (a)

would today be written as
∂2v

∂x2
+

∂2v

∂y2
= 0,

where one interprets ∂2v
∂x2 as the second derivative of v with respect to x, treating y as a constant,

and similarly for ∂2v
∂y2

, mutatis mutandis.

Task 15 Similar to an ordinary differential equation (ODE), a function is a solution to a PDE

if and only if substituting that function into the equation makes the left-hand side

equal to the right-hand side. To build up a little intuition for Fourier’s heat equation

written above, consider each of the following functions v(x, y) and decide whether or

not it is a solution to that PDE.

(a) v(x, y) = 1

(b) v(x, y) = 2x− y

(c) v(x, y) = x2 + xy − y2

(d) v(x, y) = ey cos(x) + ex sin(y)

15This special case of Fourier’s heat equation is sometimes called the two-dimensional Laplace equation, named after
the great French mathematician and scientist Pierre-Simon, marquis de Laplace (1749–1827).
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Task 16 In ODEs, we often try to come up with a general solution to a given differential

equation. In light of your work in the previous task, how feasible do you think it

would be to come up with a general solution to Fourier’s heat equation?

Seeing just how all-over-the-place the general solution to a PDE can be, it seems quite reasonable

that Fourier’s next step was to set a more modest goal. Rather than finding all solutions to his PDE,

he found just the solutions that can be factored into a function of x times a function of y.

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

§167 . . . Functions of two variables often reduce to less complex expressions, . . . which

in this particular case, take the form of the product of a function of x by a function of y.

. . . We shall then write v = F (x)f(y); substituting in equation (a) and denoting d2F (x)
dx2 by

F ′′(x) and d2f(y)
dy2

by f ′′(y), we shall have

F ′′(x)

F (x)
+

f ′′(y)

f(y)
= 0;

we then suppose16 F ′′(x)
F (x) = m2 and f ′′(y)

f(y) = −m2, with m being any constant quantity, and

as it is proposed only to find a particular value of v, we deduce from the preceding equations

F (x) = e−mx, f(y) = cosmy.

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

Task 17 Notice that Fourier was not claiming above to have found general solutions to the

equations17

F ′′(x)

F (x)
= m2

and
f ′′(y)

f(y)
= −m2,

as he wanted “only to find a particular value of v.” Verify that each of the solutions he

showed for F (x) and f(y) satisfies the corresponding equation.

At this point, Fourier substituted his particular solutions for F (x) and f(y) back into his equation

v(x, y) = F (x)f(y), and thus built the form of a particular solution to his heat equation:

v(x, y) = e−mx cosmy.

Next, he wished to determine what this constant m could be.

Recall that after finding a general solution to an ordinary first-order differential equation, one

typically has an unknown constant C, which can be solved for by plugging in an initial condition. For

16Note that in the original, Fourier simply wrote m and not m2 in the equations that follow. We made this minor
change to the translation to improve its readability, since it requires following Fourier’s slightly awkward step of
essentially redefining m as its own square root in his particular solutions.

17To do so would require Euler’s technique from Section 3, as well as more techniques from that same paper that we
did not present here.
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PDEs, one does something very similar, plugging in what are called boundary conditions to find out

more information about the solution. Let us read Fourier’s boundary conditions for this particular

PDE, after which we will use them to determine the possible values of m.

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

The function18 of x and y, v(x, y), which represents the permanent state of the solid

BAC, must, 1st, satisfy the equation (a); 2nd become nothing when we substitute −1
2π or

+1
2π for y, whatever the value of x may be; 3rd, must be equal to unity when we suppose

x = 0 and y to have any value included between −1
2π and +1

2π.

Further, this function v(x, y) ought to become extremely small when we give to x a very

large value, since all the heat proceeds from the source A.

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

Task 18 Fourier listed four conditions that our temperature function v(x, y) must satisfy, la-

beled by “1st”, “2nd”, “3rd”, and “Further.” The “1st” referred to the PDE itself,

but the next three referred to the boundary conditions. Write out each of the three

boundary conditions in three ways:

(a) in words, exactly as Fourier wrote it,

(b) in symbols, using formulas and notation from calculus wherever possible, and

(c) in terms of the corresponding assumptions being made about the temperature of

the infinite rectangular solid.

Fourier then applied the boundary conditions, one at a time, to extract information about m.

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

We could not suppose m to be a negative number, . . .

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

Task 19 Which of Fourier’s boundary conditions justified the above claim, and why?

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

The exponent m which enters into the function e−mx cosmy is unknown, and we may

choose for this exponent any positive number: but . . . m must be taken to be one of the

terms of the series, 1, 3, 5, 7,&c.;

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

Task 20 Which of Fourier’s boundary conditions justified the above claim, and why?

18Note that Fourier used v to indicate the unknown function and ϕ(x, y) to indicate the solution for this unknown,
using the two somewhat interchangeably. For readability, we use only v, or v(x, y), eliminating ϕ(x, y) entirely.
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∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

A more general value of v is easily formed by adding together several terms similar to the

preceding, and we have

v = ae−x cos(y) + be−3x cos(3y) + ce−5x cos(5y) + de−7x cos(7y) + &c. . . . . . . . . . (b).

It is evident that the function v(x, y) solves the equation d2v
dx2 + d2v

dy2
= 0, and the condition

v
(
x,±π

2

)
= 0.

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

Task 21 Verify the two claims Fourier made about the function v. At this point, which is the

only boundary condition that Fourier had not yet used?

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

A third condition remains to be fulfilled, which is expressed thus, ϕ(0, y) = 1, and it is

essential to remark that this result must exist when we give to y any value whatever included

between −1
2π and +1

2π.

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

Amazingly, just the one condition stated above ended up being enough information to solve for the

infinitely many unknowns a, b, c, d, . . .!

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

Equation (b) must therefore be subject to the following condition:

1 = a cos y + b cos 3y + c cos 5y + d cos 7y +&c.

The coefficients a, b, c, d,&c, whose number is infinite, are determined by means of this

equation.

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

Fourier proceeded to solve for all infinitely many unknowns via some very clever, and very messy,

infinite series manipulations. The end results are actually surprisingly clean, producing

a =
4

π
, b = − 4

3π
, c =

4

5π
, d = − 4

7π
, e =

4

9π
, . . .

and so on. While this work was very impressive (and is quite worth reading sometime!), we instead

follow the suggestion of our translator, Alexander Freeman, who suggested a different approach in a

footnote to his translation!

Task 22 In a footnote to Freeman’s translation of this treatise on heat transfer, he noted that

the coefficients of Fourier’s “Equation (b)” can instead be determined
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by multiplying both sides of the first equation by cos y, cos 3y, cos 5y, &c.,

respectively, and integrating from −1
2π to +1

2π.

Apply this method19 and verify that the same coefficients are produced. That is to say,

take Fourier’s equation shown above (the one he refers to as “the following condition”),

and then multiply both sides by cos(y) and integrate from y = −π/2 to y = π/2 to

find a. Then, start back with Fourier’s “condition” again, but this time multiply both

sides by cos(3y) and integrate from y = −π/2 to y = π/2 to find b. Then, start back

with Fourier’s equation yet again, but this time multiply both sides by cos(5y) and

integrate from y = −π/2 to y = π/2 to find c. You don’t need to provide a rigorous

argument that the pattern continues forever; just verify that the first few values match,

let’s say out to coefficient d. Hint! The product-to-sum identity for cosine,

cos(A) cos(B) =
cos(A+B) + cos(A−B)

2
,

will be very helpful. Be warned that for each coefficient, you will need to integrate

this series term-by-term, producing infinitely many integrals. However, do not fret;

all but one will be zero!

Task 23 Substitute the final values for a, b, c, d, . . . (stated above the previous task, which should

be the same as the ones you found in the previous task) into Fourier’s “following

condition” written above, and deduce from it his celebrated identity

π

4
= cos y − 1

3
cos 3y +

1

5
cos 5y − 1

7
cos 7y +

1

9
cos 9y −&c.

Note at this point of his Chapter III, Fourier had essentially solved this heat propagation problem,

having found the last remaining unknowns in the solution v. However, he did not even stop to

substitute them into his form for the solution v. Rather, in a section entitled “Remarks on these

series,” Fourier paused to admire what had just happened, completely ignoring the mission of solving

heat problems for a little while.20 Let us bask in this warm glow with him a bit.

7 Fun with Fourier Series!

Note that in his section “Remarks on these series,” Fourier traded out y for x as his variable, and

worked instead with the equation

π

4
= cosx− 1

3
cos 3x+

1

5
cos 5x− 1

7
cos 7x+

1

9
cos 9x−&c. (2)

Task 24 Use a graphing utility to graph the following functions:

(a) cosx

19Freeman attributed this method to the Scottish mathematician Duncan Gregory (1813–1844). As it is more
algorithmic and requires far less cleverness than what Fourier did, this is the standard method for finding coefficients
in a Fourier series taught in mathematics courses today. Here you may assume that an integral of an infinite series can
be calculated by integrating each term separately.

20Though he did then return to study heat further in his Chapter IV.
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(b) cosx− 1
3 cos 3x

(c) cosx− 1
3 cos 3x+ 1

5 cos 5x

(d) cosx− 1
3 cos 3x+ 1

5 cos 5x− 1
7 cos 7x

(e) cosx− 1
3 cos 3x+ 1

5 cos 5x− 1
7 cos 7x+ 1

9 cos 9x

On what interval (containing x = 0) does this sequence of functions appear to be

converging to the constant function π/4? How does this correspond to how Fourier

built the heat model that this function came from?

Fourier then had plenty of fun (which we now get to have with him!) substituting different values

of x into Equation (2) and seeing what popped out!

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

The case where x is nothing is verified by Leibnitz’ series,21

π

4
= 1− 1

3
+

1

5
− 1

7
+

1

9
−&c.

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

Task 25 Set x = 0 in Equation (2) in order to verify Fourier’s remark above. Also, verify that

the same series can be produced by choosing x = 1 in the power series for arctangent.22

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

§181. If in this equation we assume x = 1
2
π
2 , . . .

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

Task 26 How dare we spoil the surprise for you! Go ahead and take Fourier’s suggestion and

use that particular value for x in Equation (2). From the resulting equation, do a bit

of algebra in order to construct an infinite series expansion for the quantity

π

2
√
2
.

The resulting series and its sum were in fact discussed by none other than Isaac Newton

(1642–1726) and Gottfried Leibniz in their correspondence.23

21This series was also discovered by fourteenth-century mathematician Mādhava (1350–1425). However, there is no
clear evidence that such works were transmitted from India to Europe by Fourier’s time, hence his reference to it as
“Leibnitz’ series,” as Gottfried Leibniz (1646–1716) had independently come up with the same result, albeit roughly
two centuries later than Mādhava. For a student project based on Mādhava’s treatment of this infinite series, see
“Bhāskara’s Approximation to and Mādhava’s Series for Sine” [Monks, 2021], or for much more detail, see [Plofker,
2009].

22The arctangent power series, centered at zero, is sometimes called “Leibnitz’ formula” since it’s what Leibnitz used
to come up with this particular series.

23Read more about this correspondence (and how series like the one that Newton and Leibniz discussed can be used
to approximate the value of π) in the student project “How to Calculate pi: Machin’s Inverse Tangents” [Klyve, 2018].
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∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

. . . by giving to the arc x other particular values, we should find other series, . . . several

of which have been already published in the works of Euler. If we multiply [the] equation . . .

by dx, and integrate it, we have

πx

4
= sin(x)− 1

32
sin 3x+

1

52
sin 5x− 1

72
sin 7x+&c.

Making in the last equation x = 1
2π, we find

π2

8
= 1 +

1

32
+

1

52
+

1

72
+

1

92
+&c,

a series already known.

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

Though Fourier did not explicitly say it, the series

π2

8
= 1 +

1

32
+

1

52
+

1

72
+

1

92
+ · · · (3)

is in fact equivalent to one of the most famous infinite series problems of all time, the sum of the

reciprocals of the squares of all positive naturals. Specifically, the goal was to find an exact value for

∞∑
n=1

1

n2
.

Both Johann Bernoulli and his brother Jakob Bernoulli (1655–1705) studied this series, but were

only able to find that it converged to some number less than 2 (as proven by Jakob in [Bernoulli,

1713]). Euler’s 1735 solution to a problem which had stumped the esteemed Bernoulli brothers thus

was very famous. So, Fourier’s reference to series “which have been already published in the works of

Euler” almost surely includes the one shown above in (3).

Task 27 The fact that the three mathematicians who first studied the evaluation of the sum of

the reciprocals of the squares (the two Bernoulli’s and Euler) all came from Basel has

led to the problem being referred to as The Basel Problem [O’Connor and Robertson,

1998a]. Let us examine how Fourier’s less famous series for π2

8 is in fact equivalent to

Euler’s solution to the Basel Problem.24

(a) Take Fourier’s Equation (3) and create infinitely many new equations from it:

the first obtained by multiplying both sides by 1/4, the second obtained by mul-

tiplying both sides by 1/16, the third obtained by multiplying both sides by 1/64,

and so on for all powers of one-fourth.

(b) Add up all the equations! On the left-hand side, you will get a sum of multiples of
π2

8 . On the right-hand side, you will get an infinite sum of infinite sums (yikes!).

24Note that Fourier’s method for obtaining a solution to the Basel Problem was not even slightly similar to what
Euler did. To see (and work through yourself!) Euler’s argument, see the student project “Euler’s Calculation of the
Sum of the Reciprocals of the Squares” [Monks, 2019].
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(c) Evaluate the left-hand side using the infinite geometric series formula.

(d) Explain why the right-hand side is simply equal to
∑∞

n=1
1
n2 . (Hint! Think

about which denominators are multiples of 4, which are multiples of 16, which

are multiples of 64, and so on.)

(e) Thus, what is the value for the series
∑∞

n=1
1
n2 ?

Well, that was wild! Wait, what did this all have to do with heat again?

Task 28 Remember the original problem Fourier was trying to solve: finding the temperature

function for a region bounded on the sides by masses of ice (planes B and C) with

a boiling plate beneath (plane A). Recall that he found that the temperature was

given by a function of the form given in Equation (b), but then we diverged from his

methods for a bit to find the values of the coefficients a, b, c, d, . . .. Now that we have

those values, substitute those into Equation (b) to find the actual formula for v (as

an infinite series). Plot a few partial sums for v in a 3D graphing utility (for example

Geogebra 3D or similar). What do these graphs represent in terms of the original

temperature problem? On what domain do the graphs make sense?

8 Epilogue

Though it has become the basis of modern thermodynamics, it should be noted that the long-lasting

impact of Fourier’s The Analytical Theory of Heat was far from limited to physical applications. The

originality of Fourier’s methods, in particular the idea of representing functions as infinite sums of

trigonometric functions, served as a wellspring of inquiry in the mathematical community for decades

to come. For example, consider the following passage from the brilliant Norwegian mathematician

Niels Abel (1802–1829). This is taken from a letter he wrote back to his teacher in Norway during

his time in Paris, as quoted in [Bottazzini, 1986, pp. 87–89].

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

One can25 rigorously demonstrate that

x

2
= sinx− 1

2
sin 2x+

1

3
sin 3x− etc.

for all values of x smaller than π.

· · ·

By taking derivatives, one has

1

2
= cosx− cos 2x+ cos 3x− etc.

A completely false result, because this series is divergent.

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

25. . . and in fact Fourier did, in §182 of The Analytical Theory of Heat.
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Task 29 Take the derivative of both sides on the first equation Abel stated above and verify

that it produces the second as he claimed. Then, investigate Abel’s musings a bit

more by using x = 0 in the second series. Are things any better if you set x = π/4?

How about x = π/2?

Inspired by examples like the one above, Abel realized there was a strong need to establish more

rigorous foundations in the field of analysis, as he elaborated upon below.

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

In general the theory of infinite series, up to the present, is very poorly established. One

performs every kind of operation on infinite series, as if they were finite, but is it permissible?

. . . Where has it been demonstrated that one can obtain the derivative of an infinite series

by taking the derivative of each term?

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

Task 30 In light of Abel’s example and corresponding commentary, what step of Fourier’s work

in establishing Equation (3) do you think would have made him very uncomfortable?

Also, revisit the opening quote of this project, from Fourier. How do you think Abel

would have responded if he read those words from Fourier?

Abel, along with other leading 19th-century mathematicians including Augustin-Louis Cauchy

(1789–1857), Karl Weierstrass (1815–1897), Bernard Bolzano (1781–1848), and Richard Dedekind

(1831–1916), proceeded to lay out some of the more rigorous foundations of mathematics that have

become standard today.26 Note that their concerns did not invalidate any of Fourier’s work; rather,

Fourier’s work served as fertile ground for the very fruitful thought exercises that followed.

In conclusion, it is hard to overstate the influence of Fourier’s work The Analytical Theory of

Heat. On one hand, it laid the groundwork for one of today’s standard branches of physics and

engineering, thermodynamics, along with climate science and the study of global warming. On the

other, it led to fabulous advances in pure mathematics, both through the work contained therein

and future mathematicians’ responses to it!

Task 31 To see the massive flow of ideas that wove together into and then tendriled out of

Fourier’s work here, draw a timeline, and place each mathematician mentioned in this

project on the timeline, represented as an interval marked by their birth and death

years. In the cases where the date of a specific work is mentioned, plot that date as

well (and if you are feeling ambitious and curious, see if you can find dates for some

of the other relevant works not mentioned in this project too). Where does the actual

publication of The Analytical Theory of Heat lie?

26Typically these rigorous foundations form the backbone of upper-level undergraduate analysis courses. If someday
you wish to see this material straight from the horse’s mouth, see the student projects “Why be so Critical? Nineteenth
Century Mathematics and the Origins of Analysis” [Barnett, 2018] and “Abel and Cauchy on a Rigorous Approach to
Infinite Series” [Ruch, 2016].
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Notes to Instructors

PSP Content: Topics and Goals

This Primary Source Project (PSP) is intends to give students a guided tour through Fourier’s

incredibly influential book, The Analytical Theory of Heat. The mathematics that they will work

through is quite broad and includes the following topics:

• Higher-order linear homogeneous constant-coefficient differential equations

• Fourier series

• Infinite series

• Power series

• Partial differential equations

• Improper integrals

• Limits to infinity

• Foundational questions of rigor in analysis

Note that this project comes in two versions, a “mini-PSP” and a longer “full-length” PSP. Both

are available at https://digitalcommons.ursinus.edu/triumphs_differ/. Short descriptions

follow.

• The mini-PSP shows only two examples of Fourier modeling heat propagation: one in an square

prism of infinite length and one in an infinite rectangular solid. However, the substantial

amount of mathematics listed above all arises in just these two examples!

• The full-length PSP includes everything mentioned above, but it then also takes the reader for

a joyride with Fourier, following him as he used his trigonometric series to prove a plethora

of infinite series identities. This PSP then ends with a substantial Epilogue, showing how this

work served as one impetus to future generations of mathematicians as they explored questions

regarding rigor in analysis. This is the version you are currently reading.

Student Prerequisites

Basic techniques of differentiation, partial differentiation, integration, and limit calculation are the

only assumed prerequisites for this project, along with some basic idea of what a differential equation

is and what a solution to a differential equation is. Hence, this project is quite appropriate near the

end of a multivariable calculus course (assuming there was a brief introduction to ODEs somewhere

in students’ Calculus I or II classes) as well as in a course in differential equations.

PSP Design and Task Commentary

This PSP gives some context and background in the introduction and Section 1. Section 2 describes

Fourier’s solution to the heat problem in the case of a square prism of infinite length, which results in

a second-order linear differential homogeneous equation. Section 3 shows a result from Euler which

is applied to Fourier’s differential equation in Section 4. The very brief Section 5 introduces Fourier’s

general PDE with respect to time and three-dimensional space, and Section 6 then applies it to an
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infinite rectangular solid. This example motivated Fourier’s development of Fourier series. Section

7 showcases the plethora of infinite series identities that follow from Fourier series. In Section 8 we

look at the mathematical community’s reaction to these results as a sneak peek into the foundations

of rigor in analysis.

None of the manipulations are terribly messy in this project, except for perhaps the integrals in

the Fourier series coefficient calculations. The product-to-sum identities for cosine are provided as

hints to help make these integrals easier.

One place where the instructor will likely want to pay close attention to student work is where the

student is asked to identify the boundary conditions in the PDE governing the infinite rectangular

solid. If the student has even a small transcription error there, they will be setting themselves up

for a world of hurt when trying to find m in the tasks that follow.

Suggestions for Classroom Implementation

This project could be implemented any of a number of ways, and would probably take a very different

form in a multivariable calculus course versus in differential equations. In multivariable calculus, it

could actually make a very good project-based assessment, perhaps replacing a cumulative test,

since it covers such a broad plethora of topics from the calculus sequence, including limits, definite

integrals, improper integrals, partial derivatives, geometric series, and power series (and the only

technique from diffeq that is required is self-contained, included in the Euler passage). In differential

equations, it might be a little too easy for a test, but it could be used to introduce the content

of homogeneous linear constant-coefficient differential equations in a very contextualized applied

setting.

The author is happy to provide LATEX code for this project. It was created using Overleaf which

makes it very convenient to copy and share projects and can allow instructors to adapt this project

in whole or in part as they like for their courses.

Sample Implementation Schedule (based on a 50-minute class period)

The author recommends four full 50-minute class periods for implementation of this PSP in a differ-

ential equations class.

• The readings and tasks of Section 1 can be assigned as preparation for class.

• Start class with 10 minutes of follow-up discussion on the first section. Get them ready for

Section 2 by reading, drawing, and labelling some diagrams together.

• The next 30 minutes could consist of students working in small groups, complete as much as

they can of the remaining PSP, the assistance of the instructor and/or any learning assistants.

• During the last 10 minutes of class, perhaps have some discussion around common difficulties

and sticking points. Anything unfinished in Section 2 can be homework.

• To prepare for the second session, the students can be asked to read and attempt Section 3.

The goal of the second session can be to finish through the end of Section 4, completing the

square prism example.

• Reading Section 5 and reading/completing as much as possible in Section 6 would make great

prep for the third session. Opening the third session with a discussion of Fourier’s infinite

rectangular solid, making sure all students have the right shape in their mind, would be a great
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start. A brief discussion of how to find coefficients in a Fourier series might also be helpful if

the instructor notices students struggling with that task; an instructor may wish to find a for

them on the board and then let them do b, c, d. Finishing Section 6 can be homework.

• The fourth session can focus on the somewhat tricky infinite series manipulations of Section 7.

In particular, the students may need some help showing that the series expansions for Fourier’s

π2/8 and Euler’s π2/6 are in fact derivable from each other.

• Anything unfinished from Section 7, along with the much easier Section 8, can be assigned for

homework.

Connections to other Primary Source Projects

There are several PSPs that relate very directly to the content of this PSP. The ways in which they

relate are discussed in footnotes throughout this document.

Furthermore, this differential equations PSP is only one of a series of such projects that include

student projects on first-order linear DEs, Bernoulli DEs, exact DEs, higher-order linear DEs, Wron-

skians, and more! There is also a mini-PSP version of this same project that contains only the infinite

square prism and the infinite rectangular solid examples, without all the infinite series explorations.

Find them at the URL below:

https://digitalcommons.ursinus.edu/triumphs_differ/

Recommendations for Further Reading

The PSPs mentioned above are perfect further reading for the curious student! For an advanced

student looking for a deeper treatment of the subjects discussed here, the author recommends Fourier

Analysis: An Introduction by Stein and Shakarchi (Princeton University Press, 2003). It takes

Fourier’s foundational ideas and extends them in incredibly surprising ways (for example, using

them to prove Dirichlet’s Theorem), and is quite readable for an advanced undergraduate.
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