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Abel and Cauchy on a Rigorous Approach to Infinite Series

David Ruch∗

November 22, 2021

1 Introduction

Infinite series were of fundamental importance in the development of calculus by Newton, Euler and
other mathematicians during the late 1600s and 1700s. Questions of rigor and convergence were of
secondary importance in these times, but attitudes began to change in the early 1800s. When the
brilliant young mathematician Niels Abel (1802–1829) moved to Paris in 1826 at age 24, he was aware
of many paradoxes with infinite series and wanted big changes. Indeed, in a letter to his teacher
Bernt Holmboe (1795–1850), Abel wrote:

I shall devote all my efforts to bring light into the immense obscurity that today reigns in
Analysis. It so lacks any plan or system, that one is really astonished that there are so many
people who devote themselves to it — and, still worse, it is absolutely devoid of rigor.1

Abel was born and raised in Norway, far from the centers of mathematical activity in his time.
His work was largely unrecognized during his lifetime through a series of misfortunes. Nevertheless,
he managed to get to Paris and attend lectures by mathematical stars such as Adrien-Marie Legendre
(1752–1833) and Augustin Louis Cauchy (1789-1-857). Abel was particularly taken by Cauchy and
his efforts to introduce rigor into analysis, and wrote to Holmboe that Cauchy “is the only man who
knows how mathematics should be treated. What he does is excellent.”2

In this project, we will read excerpts from 1820s work by Abel and Cauchy as we rigorously
develop infinite series and examine some of the tough infinite series problems of their day.

The study and use of series go back to antiquity. The Greek mathematician Archimedes used
series to help calculate the area under the arc of a parabola, and geometric series such as

1

2
+

1

4
+

1

8
+ · · · = 1

were well known and used extensively in the development of calculus. The notion of divergent series
was not clearly understood and somewhat controversial in the times leading up to Abel and Cauchy.

∗Department of Mathematical and Computer Sciences, Metropolitan State University of Denver, Denver, CO; email:
ruch@msudenver.edu

1As quoted in [Hairer and Wanner, 2008, p. 188].
2As quoted in [Hairer and Wanner, 2008, p. 188].
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For a simple example, here are two groupings and “sums” of the series 1− 1 + 1− 1 + 1− 1 + · · ·

(1− 1) + (1− 1) + (1− 1) + · · · = 0 + 0 + 0 + · · · = 0

1 + (−1 + 1) + (−1 + 1) + (−1 + 1) + · · · = 1 + 0 + 0 + 0 + · · · = 1

which suggests that 1 = 0 (oops!). Some mathematicians in the 1700’s suggested that the sum of
this series should split the difference and be 1/2, and others argued that the series did not converge
and had no sum.

The following short excerpt from Abel comes from another 1826 letter written home to Holmboe
from Paris.3 In it, Abel referenced a much more sophisticated series example (equation (1) below)
that Euler had discussed in 1750.4 This series was quite important historically, as Joseph Fourier
used it in his development of Fourier series and his model of heat transfer during the early 1800s.

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

Divergent series are in their entirety an invention of the devil and it is a disgrace to base
the slightest demonstration on them. You can take out whatever you want when you use
them, and they are what has produced so many failures and paradoxes. . . . The following
example shows how one can err. One can rigorously demonstrate that

x

2
= sinx− 1

2
sin 2x+

1

3
sin 3x− · · · (1)

for all values of x smaller than π. It seems that consequently the same formula must be true
for x = π; but this will give

π

2
= sinπ − 1

2
sin 2π +

1

3
sin 3π − etc. = 0.

On can find innumerable examples of this kind.
In general the theory of infinite series, up to the present, is very poorly established. One

performs every kind of operation on infinite series, as if they were finite, but is it permissible?
Never at all. Where has it been demonstrated that one can obtain the derivative of an infinite
series by taking the derivative of each term? It is easy to cite examples where this is not right
. . . . By taking derivatives [of (1)], one has

1

2
= cosx− cos 2x+ cos 3x− etc. (2)

A completely false result, because this series is divergent.
∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

Task 1 Find a few values of x less than π which, substituted into (2), produce strange results
and support Abel’s contention that the series in (2) is divergent.

In Abel’s day, there was no standard terminology for “absolute value”5 and mathematicians were

3As quoted in [Bottazzini, 1986, p. 87–89].
4See [Bottazzini, 1986] and [Jahnke, 2003] for more on this series, which appears in discussions between Euler and

d’Alembert on how to model the motion of a vibrating string.
5The absolute value symbol |x| was introduced by Weierstrass later in the 1800s.
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not always clear whether they meant the absolute value of a number or the number itself.

Task 2 In the excerpt above, Abel claimed that the series in equation (1) is valid “for all values
of x smaller than π.” Do you think he meant x itself or |x|?

Task 3 Let’s try to visualize equation (1). Use a Computer Algebra System (CAS) to graph

y = x/2 and y = sinx− 1

2
sin 2x+

1

3
sin 3x−· · ·− 1

10
sin 10x together for −2π ≤ x ≤ 2π.

What do you observe at x = ±π? If you were to plot even more terms from the infinite
series, the “wiggly” parts of the sine curve would grow even closer to straight line for
|x| < π. What do you think of Abel’s comments about this series and its derivative?

We won’t try to tackle all the issues Abel raised with this example. However, we can see why
mathematicians of his time were struggling with infinite series at the same time that they were
amazed by their power!

Another series that bothered Abel comes from the Binomial Theorem. Newton had discovered
that the standard finite binomial expansion (1 + x)m for positive integer m could be be generalized
to an infinite series for non-integer values of m (equation (3) below), and he was able to use this
series to produce a number of new results. While Newton thought this series converged only for
|x| < 1, no one had produced a convergence proof that fully convinced Abel, and he set out to do so
in an 1826 paper.6 Here is an excerpt from the introduction of that paper [Abel, 1826].

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

1.
If one subjects to a more precise examination the reasoning that one generally uses when

dealing with infinite series, one will find that, taken as a whole, it is not very satisfactory, and
that consequently the number of theorems concerning infinite series that may be considered
rigorously based is very limited. One normally applies the operations of analysis to infinite
series as if the series were finite. This does not seem to me permissible without special proof.
. . . . . .

One of the most remarkable series in algebraic analysis is

1 +
m

1
x+

m (m− 1)

1 · 2
x2 +

m (m− 1) (m− 2)

1 · 2 · 3
x3 + . . .

+
m (m− 1) (m− 2) . . . [m− (n− 1)]

1.2.3 . . . n
xn etc..

(3)

When m is a positive whole number, one knows that the sum of this series, which in
this case is finite, may be expressed as (1 + x)m . When m is not a whole number, the series
becomes infinite, and it will be convergent or divergent, according to different values that one
gives to m and x. In this case one writes in the same way

(1 + x)m = 1 +
m

1
x+

m (m− 1)

1 · 2
x2 + . . . etc.; (4)

6This paper was appropriately entitled “Untersuchungen über die Reihe: 1+ m
1
x+ m(m−1)

1.2
x2+ m(m−1)(m−2)

1.2.3
x3 . . .,”

or “Investigations on the Series: 1 + m
1
x+ m(m−1)

1.2
x2 + m(m−1)(m−2)

1.2.3
x3 . . ..”
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. . . One assumes that numerical equality will always hold when the series is convergent; but
this is what until now has not yet been proved. No one has even examined all the cases where
the series is convergent . . . .

The aim of this memoir is to try to fill a gap with the complete solution of the
following problem:

“Find the sum of the series (3) for all real or imaginary values of x and m for which the
series is convergent.”

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

Task 4 To get a sense of the binomial series equality for whole numbers m, verify (4) with
m = 3.

Task 5 To get a visual idea of Abel’s concerns about the binomial series with non-integer m,
use a CAS to graph y =

√
1 + x and the first five terms of series (3) together for

−1.2 ≤ x ≤ 1.2. Newton claimed this series converges for |x| < 1. Does your plot
suggest this is correct? Does the plot suggest the series converges at x = ±1? What
about for |x| > 1?

Abel continued his introduction as follows.

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

2.
We are first going to establish some necessary theorems on series. The excellent work of

Cauchy Cours d’analyse de l’école polytechnique,which must be read by every analyst who
loves rigor in mathematical research, will serve as our guide.

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

We will now take Abel’s advice and read Cauchy on infinite series in the next part of this project.
Then we will return to Section 2 of Abel’s paper, where he developed some new infinite series results
and tackled a controversial theorem of Cauchy. This work is important in its own right, independent
of the Binomial Theorem, and will serve as the primary focus of our project.

2 Cauchy on Infinite Series

Augustin Louis Cauchy was a renowned mathematician in 1826 Paris. After graduating in 1810
from the École Polytechnique in Paris, he published much impressive mathematics and became a
professor at this same institution. Cauchy loved pure mathematics and was convinced of the need
for a rigorous approach to analysis. He wrote his Cours d’Analyse [Cauchy, 1821] for his teaching,
and he constructed it with his philosophy of rigor. Abel had read this text before coming to Paris
and was inspired to use its methods and spirit in his own research. One radical aspect of Cauchy’s
book was his study of convergence of series without necessarily finding the sum of the series, which
was quite a departure from the eighteenth century tradition of focusing on series sums with little
attention to convergence issues.

We now start reading Chapter 6 on infinite series of Cauchy’s Cours d’Analyse.
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∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

6.1 General Considerations on series.
We call a series an indefinite sequence of quantities,

u0, u1, u2, u3, . . . ,

which follow from one to another according to a determined law. These quantities themselves
are the various terms of the series under consideration. Let

sn = u0 + u1 + u2 + . . .+ un−1 (5)

be the sum of the first n terms, where n denotes any integer number. If, for ever increasing
values of n, the sum sn indefinitely approaches a certain limit s, the series is said to be
convergent, and the limit in question is called the sum of the series. On the contrary, if the
sum sn does not approach any fixed limit as n increases indefinitely, the series is divergent,
and does not have a sum. In either case, the term which corresponds to the index n, that is
un, is what we call the general term. For the series to be completely determined, it is enough
that we give this general term as a function of the index n.

One of the simplest series is the geometric progression

1, x, x2, x3, . . . ,

which has xn for its general term, that is to say the nth power of the quantity x. If we form
the sum of the first n terms of this series, then we find

1 + x+ x2 + · · ·+ xn−1 =
1

1− x
− xn

1− x
(6)

As the values of n increase, the numerical value of the fraction xn

1−x converges towards the
limit zero, or increases beyond all limits, according to whether we suppose that the numerical
value of x is less than or greater than 1. Under the first hypothesis, we ought to conclude
that the progression

1, x, x2, x3, . . . ,

is a convergent series which has 1
1−x as its sum, whereas, under the second hypothesis, the

same progression is a divergent series which does not have a sum.

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

Cauchy’s terminology and notation are close to what we use today, but there are some differences.
Cauchy began by calling a series “an indefinite sequence of quantities, u0, u1, u2, u3, . . .” but then says
“These quantities themselves are the various terms of the series under consideration.” This may seem
confusing, especially if you remember the distinction between a sequence and a series from your
introductory calculus courses. Fortunately, Cauchy elaborated by defining and discussing the sn
sums. The sn expression Cauchy defined in (5) above is still used in modern terminology and is
nowadays called the nth partial sum. Notice that we can form a sequence of partial sums (sn) , and
observe that the convergence of the series is equivalent to convergence of the sequence (sn) . Most
modern texts formally define the infinite series generated by the uk terms to be the sequence (sn)

5



of partial sums. Informally, we often write both the infinite series and its sum (when defined) as
u0 + u1 + u2 + u3 + · · · . Cauchy did start writing the sum of a convergent series this way later in his
Section 6.1, as we shall see later in the project.

Cauchy’s definition that a divergent series does not have a sum was not universally accepted in
his day, but is now standard.

Task 6 As an example, let uk = (−1)k for all integers k ≥ 0.

(a) Find s0, s1, s2, s3 for the infinite series generated the uk terms.
(b) Do you think the sequence of partial sums (sn) converges or diverges? Explain.
(c) Do you think the infinite series generated by the uk terms converges or diverges?

Explain.
(d) Discuss the pros and cons of writing this infinite series informally as

1− 1 + 1− 1 + · · ·

Task 7 Using modern notation, rewrite Cauchy’s definition of series convergence and the sum
s in terms of the sequence of partial sums (sn).

Task 8 Verify the algebra in (6). This is often called the finite geometric series formula. For
what x values is this formula valid?

Task 9 In Cauchy’s discussion of the convergence of the geometric series, note his language
“whether we suppose that the numerical value of x is less than or greater than 1.”

(a) Explain why the geometric series diverges for x = −2.
(b) Does the series converge or diverge when x = 1,−1?
(c) In modern terminology, what do you think Cauchy meant by the “numerical value

of x”? Cauchy frequently used the term “numerical value”with this meaning.

Notice that Cauchy did not use sigma summation notation
∑∞

k=0 uk in this 1821 work, nor did
Abel use it in his 1826 paper. The sigma summation did not come into common use until later in the
1800s. Since it is now conventional to denote both the infinite series and its sum using the symbols∑
ui or

∑∞
i=0 ui, we will do so in this project.

Task 10 Rewrite Cauchy’s proof for the geometric series when |x| < 1 using modern notation
and results from a modern treatment of sequences.

Task 11 Suppose a series
∑
ai converges and c ∈ R. Prove the series

∑
(cai) converges with

sum c
∑
ai. If

∑
ai diverges, what can you say about

∑
(cai)?

Task 12 Suppose series
∑
ai and

∑
bi converge to A and B, respectively. Prove the series∑

(4ai + 7bi) converges. Write its sum in terms of A and B. Generalize the results of
this task.

6



Task 13 Use the results above to determine convergence and sum, or divergence, of the following
series.

(a) 6− 2

3
+

2

27
− 2

243
+ · · · (b)

∑∞
k=2

5k−1

4k+1

Let’s return to Cauchy. As you read this next excerpt, pay careful attention to how Cauchy used
the terms “necessary” and “sufficient” in his claims.

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

(Cauchy Section 6.1 continued)
Following the principles established above, in order that the series

u0, u1, u2, . . . , un, un+1, . . . (7)

be convergent, it is necessary and it suffices that increasing values of n make the sum

sn = u0 + u1 + u2 + . . .+ un−1

converge indefinitely towards a fixed limit s. In other words, it is necessary and it suffices
that, for infinitely large values of the number n, the sums

sn, sn+1, sn+2, . . .

differ from the limit s, and consequently from one another, by infinitely small quantities.
Moreover, the successive differences between the first sum sn and each of the following sums
are determined, respectively, by the equations

sn+1 − sn = un

sn+2 − sn = un + un+1

sn+3 − sn = un + un+1 + un+2

Hence, in order for series (7) to be convergent, it is first of all necessary that the general
term un decrease indefinitely as n increases. But this condition does not suffice, and it is also
necessary that, for increasing values of n, the different sums,

un + un+1

un + un+1 + un+2

that is to say, the sums of as many of the quantities

un, un+1un+2, . . . ,

as we may wish, beginning with the first one, eventually constantly assume numerical values
less than any assignable limit. Conversely, whenever these various conditions are fulfilled, the
convergence of the series is guaranteed.

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

7



Task 14 List all the “necessary” claims in this excerpt, expressing each as an implication. Then
list all the “sufficient” claims, expressing each as an implication.

Task 15 Carefully re-read Cauchy’s sentence beginning with “In other words . . .” and notice that
he was making two separate equivalence claims, from a modern viewpoint. Rewrite
each equivalence claim in Cauchy’s sentence with modern ϵ-N terminology.

Cauchy’s statements that

“. . . in order for series (7) to be convergent, it is first of all necessary that the general term
un decrease indefinitely as n increases. But this condition does not suffice.”

are worth a clarification, a proof and some examples.

Task 16 First, clarify what Cauchy meant by “the general term un decrease indefinitely as n
increases.”Second, write the claim “it is first of all necessary that the general term un
decrease indefinitely as n increases ” as a theorem, and give a modern proof using
Cauchy’s equation sn+1 − sn = un and modern sequence limit laws.

Task 17 Write down the contrapositive of your theorem implication from Task 16. This result
should remind you of an infinite series “test” from your Introductory Calculus course.
What is the test called?

Task 18 Apply your result in Task 16 to the following series, where possible. Then interpret
Cauchy’s statements that “in order for series (7) to be convergent, it is first of all necessary
that the general term un decrease indefinitely as n increases. But this condition does not
suffice” for each series.

(a) 1− 1 + 1− 1 + 1− 1 + · · ·

(b) 1 +
1

2
+

1

3
+

1

4
+ · · ·

(c) 3

4
+

4

5
+

5

6
+

6

7
+ · · ·

Task 19 Consider the statement “the sums of as many of the quantities

un, un+1un+2, . . . ,

as we may wish, beginning with the first one, eventually constantly assume numerical
values less than any assignable limit.” Using finite sums, convert this statement into
modern ϵ-N terminology. What is this saying about the sequence (sn) , in modern
terminology?

Task 20 Consider the statement “Conversely, whenever these various conditions are fulfilled, the
convergence of the series is guaranteed.” What modern theorem about sequences of real
numbers justifies this statement?

8



It is interesting that Cauchy, and many of his contemporaries, thought this last necessary and
sufficient condition for convergence of a series was obvious and did not need a proof. As we shall
see, Cauchy and Abel used this criterion, nowadays named after Cauchy, to prove some convergence
results.

Task 21 Rewrite this new “Cauchy criterion” for series convergence in modern ϵ-N terminology.

The next result will come in handy when we read Abel.

Task 22 Suppose an infinite series
∑
un is convergent and ϵ0 > 0, and define Qm by

Qm = sup

{∣∣∣∣∣
m+n∑
k=m

uk

∣∣∣∣∣ : n ∈ N

}
.

Prove there exists N ∈ N such that for any m ≥ N , Qm < ϵ0.
Hint: Use a property of the convergent sequence of partial sums (sn) of

∑
un.

Task 23 Suppose series
∑

|xk| converges. Use the Cauchy criterion to prove that
∑
xk must

converge.

Now that we have carefully analyzed some fundamental results by Cauchy, let’s return to his
discussion, where he considered two important examples.

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

(Cauchy Section 6.1 continued)
Let us take, for example, the geometric progression

1, x, x2, x3, . . . (8)

If the numerical value of x is greater than 1, that of the general term xn increases
indefinitely with n, and this remark alone suffices to establish the divergence of the series.
The series is still divergent if we let x = ±1, because the numerical value of the general
term xn, which is 1, does not decrease indefinitely for increasing values of n. However, if
the numerical value of x is less than 1, then the sums of any number of terms of the series,
beginning with xn, namely

xn,

xn + xn+1 = xn
1− x2

1− x
,

xn + xn+1 + xn+2 = xn
1− x3

1− x
,

are all contained between the limits

xn and xn

1− x
,

each of which becomes infinitely small for infinitely large values of n. Consequently, the series
is convergent, as we already knew.

9



As a second example, let us take the numerical series

1,
1

2
,
1

3
,
1

4
, . . . ,

1

n
,

1

n+ 1
, . . . (9)

The general term of this series, namely 1
n+1 , decreases indefinitely as n increases. Neverthe-

less, the series is not convergent, because the sum of the terms from 1
n+1 up to 1

2n inclusive,
namely

1

n+ 1
+

1

n+ 2
+ · · ·+ 1

2n− 1
+

1

2n

is always greater than the product
n

1

2n
=

1

2

whatever the value of n. As a consequence, this sum does not decrease indefinitely with
increasing values of n, as would be the case if the series were convergent.

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

Task 24 In this part of Section 6.1, Cauchy gave a proof that the geometric series is conver-
gent for |x| < 1, using the new Cauchy criterion for series convergence that you put
into modern form in Task 21. Notice that he was a bit cavalier for the negative x
case when stating that terms are “all contained between the limits . . ..”Write a careful
modern version of his proof using the modern form of the Cauchy criterion for series
convergence.

Now we turn to Cauchy’s second example, where he argued that the series (9) diverges.

Task 25 Write a “Cauchy criterion” for series divergence in modern ϵ-N terminology.
Hint: Negate your definition from Task 21.

Task 26 Justify Cauchy’s claim after (9) that

1

n+ 1
+

1

n+ 2
+ · · ·+ 1

2n− 1
+

1

2n
>

1

2
.

Task 27 Rewrite Cauchy’s proof that series (9) diverges, using modern terminology, quantifiers,
and the new Cauchy criterion.
Hint: Consider s2n − sn.

You may recognize this series (9) from introductory calculus as the harmonic series. It is interest-
ing to note that this series was first shown to diverge by Nicole Oresme (c. 1323–1382), long before
Cauchy’s time. Oresme’s proof was different from Cauchy’s, but used the same crucial observation
that 1

n+ 1
+

1

n+ 2
+ · · ·+ 1

2n− 1
+

1

2n
>

1

2
for each n.

Let’s go back to Cauchy for another important example, which he analyzed with another useful
technique. Also notice that Cauchy did start writing the sum of a convergent series as u0+u1+u2+
u3 + . . . in this excerpt.

10



∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

(Cauchy Section 6.1 continued)
Let us further consider the numerical series

1,
1

1
,

1

1 · 2
,

1

1 · 2 · 3
, . . . ,

1

1 · 2 · 3 . . . n
· · · (10)

The terms of this series with index greater than n, namely

1

1 · 2 · 3 . . . n
,

1

1 · 2 · 3 . . . n (n+ 1)
,

1

1 · 2 · 3 . . . n (n+ 1) (n+ 2)
, · · · ,

are, respectively, less than the corresponding terms of the geometric progression

1

1 · 2 · 3 . . . n
,

1

1 · 2 · 3 . . . n
1

n
,

1

1 · 2 · 3 . . . n
1

n2
, · · · ,

As a consequence, the sum of however many of the initial terms as we may wish is
always less than the sum of the corresponding terms of the geometric progression, which is a
convergent series, and so a fortiori, it is less than the sum of this series, which is to say

1

1 · 2 · 3 . . . n
1

1− 1
n

=
1

1 · 2 · 3 . . . (n− 1)

1

n− 1
. (11)

Because this last sum decreases indefinitely as n increases, it follows that series (10) is
itself convergent. It is conventional to denote the sum of this series by the letter e. By adding
together the first n terms, we obtain an approximate value of the number e,

1 +
1

1
+

1

1 · 2
+

1

1 · 2 · 3
+ . . .+

1

1 · 2 · 3 . . . (n− 1)
.

According to what we have just said, the error made will be smaller than the product of the
nth term by 1

n−1 . Therefore, for example, if we let n = 11, we find as the approximate value
of e

e = 2.7182818 . . . , (12)

and the error made in this case is less than the product of the fraction 1
1·2·3·4·5·6·7·8·9·10

by 1
10 , that is 1

36,288,000 , so that it does not affect the seventh decimal place.
The number e, determined as we have just said, is often used in the summation of series

and in the infinitesimal Calculus. Logarithms taken in the system with this number as its
base are called Napierian, for Napier, the inventor of logarithms, or hyperbolic, because they
measure the various parts of the area between the equilateral hyperbola and its asymptotes.7

In general, we denote the sum of a convergent series by the sum of the first terms, followed
by an ellipsis. Thus, when the series

u0, u1u2, u3, . . . ,

7Cauchy meant the area under the curve y = 1/x, using standard terminology of his time.
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is convergent, the sum of this series is denoted

u0 + u1 + u2 + u3 + . . .

By virtue of this convention, the value of the number e is determined by the equation

1 +
1

1
+

1

1 · 2
+

1

1 · 2 · 3
+

1

1 · 2 · 3 · 4
+ . . . , (13)

and, if one considers the geometric progression

1, x, x2, x3, . . .

we have, for numerical values of x less than 1,

1 + x+ x2 + x3 + . . . =
1

1− x
. (14)

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

Euler derived this series expression (10) for e by 1748 from the sequence definition e = lim (1 + 1/n)n

using an infinitesimal argument with the Binomial Theorem. Cauchy proved convergence of the e
series by comparing each series term to a larger geometric series value, which he could sum precisely.
You will generalize this method in Task 30 below.

Task 28 Fill the algebraic details of Cauchy’s argument between (10) and (11) that, for arbi-
trary n,m ∈ N, the difference sn+m − sn for the e series is less than 1

1·2·3...(n−1)
1

n−1 .

Task 29 Use Cauchy’s approach with the Cauchy criterion to give a modern ϵ-N proof that the
series

∑∞
k=0

1
k! converges.

Task 30 Use Cauchy’s comparison ideas for the e series to fill in the blanks below (with
∑
ai

or
∑
bi) and create a valid theorem.

Theorem 1. Suppose (ai) and (bi) are sequences and there exists a K ∈ N for which
0 ≤ ai ≤ bi whenever i ≥ K. If converges, then converges.

This theorem might remind you of an infinite series “test” from your introductory calculus course.
Do you remember the name of this test?

Task 31 Prove Theorem 1.

Hint: Use partial sum sequences and the Monotone Convergence Theorem.

Task 32 Use a contrapositive to state and prove a “divergence” version of Theorem 1.

12



Task 33 Use your results to determine convergence or divergence of the following series.

(a) 4/7

1
+

5/7

2
+

6/7

3
+

1

4
+

8/7

5
+ · · ·

(b)
∑∞

n=2

(3n+ 1) 42n−1

7n+5

(c) 1

6
+

1/2

18
+

1/3

54
+

1/4

162
+ · · ·

In the next excerpt, we will see how Cauchy tried to extend his ideas on series of real numbers to
series of a function x. His argument has problems from a modern point of view, so read it carefully.

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

Denoting the sum of the convergent series

u0, u1u2, u3, . . . ,

by s and the sum of the first n terms by sn, we have

s = u0 + u1 + u2 + . . .+ un−1 + un + un+1 + . . .

= sn + un + un+1 + . . . ,

and, as a consequence,

s− sn = un + un+1 + . . .

From this last equation, it follows that the quantities

un, un+1, un+2, . . .

form a new convergent series, the sum of which is equal to s− sn. If we represent this sum
by rn, we have

s = sn + rn ,

and rn is called the remainder of series (7) beginning from the nth term.
Suppose the terms of series (7) involve some variable x. If the series is convergent and

its various terms are continuous functions of x in a neighborhood of some particular value of
this variable, then

sn, rn and s

are also three functions of the variable x, the first of which is obviously continuous with
respect to x in a neighborhood of the particular value in question. Given this, let us consider
the increments in these three functions when we increase x by an infinitely small quantity α.
For all possible values of n, the increment in sn is an infinitely small quantity. The increment
of rn, as well as rn itself, becomes infinitely small for very large values of n. Consequently,
the increment in the function s must be infinitely small. From this remark, we immediately
deduce the following proposition:

13



Theorem I — When the various terms of series (7) are functions of the same variable x,
continuous with respect to this variable in the neighborhood of a particular value for
which the series converges, the sum s of the series is also a continuous function of x in
the neighborhood of this particular value.

By virtue of this theorem, the sum of series (8) must be a continuous function of the
variable x between the limits x = −1 and x = 1, as we may verify by considering the values
of s given by the equation

s =
1

1− x
.

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

For simplicity we will take Cauchy’s meaning of the term “neighborhood” about a value x to be
a small open interval (x− δ, x+ δ) centered at the value x.

Task 34 In his proof outline for Theorem I, Cauchy stated that sn is “obviously continuous with
respect to x in a neighborhood of the particular value in question.” Justify this statement
using a theorem for continuous functions.

Task 35 A key part of Cauchy’s argument is: “consider the increments in these three functions
when we increase x by an infinitely small quantity α. For all possible values of n, the
increment in sn is an infinitely small quantity. The increment of rn, as well as rn itself,
becomes infinitely small for very large values of n.”

(a) Rewrite this argument using modern terminology and quantifiers. Note: you are
just translating, not proving his claim.

(b) What part of this argument seems most difficult to justify?

Cauchy’s claim in this theorem seems pretty reasonable: if we add up some continuous functions
that converge to a limit function at a point x, it seems plausible that the limit function is also
continuous at x. Unfortunately, this is not always the case at all x values8. Indeed, Abel noticed
this issue. Here is a footnote from Abel’s 1826 paper where he addressed this problem:

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

In the work by M. Cauchy one will find the following theorem: “When the various terms
of series u0 + u1 + u2 + · · · are functions of the same variable x, continuous with respect to
this variable in the neighborhood of a particular value for which the series converges, the sum
s of the series is also a continuous function of x in the neighborhood of this particular value.”

But it seems to me that this theorem admits of exceptions. For example the series

sinx− 1

2
sin 2x+

1

3
sin 3x− · · · (15)

is discontinuous for any value (2m+ 1)π, where m is a whole number.

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

8Some historians argue that Cauchy meant the convergence was uniform, which makes his theorem valid. For more
on this debate, see [Jahnke, 2003] and [Bottazzini, 1986].
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Task 36 Go back to the project introduction and re-read Abel’s discussion of this series in the
excerpt on page 2. As Abel stated in that excerpt, this series (15) can be shown to
converge to x/2 for any value of x with |x| < π, although the proof method (Fourier
series convergence), is beyond the scope of this project. Carefully explain why the
conclusion to Cauchy’s Theorem I is not correct for the series (15) at x = π.

Note that Abel politely mentioned this example as an “exception” to Cauchy’s theorem. A
blunter interpretation would be that Abel had found a counterexample to this theorem, rendering it
invalid without stronger hypotheses. He did not identify the problem in Cauchy’s proof, but he did
prove a correct variation of this theorem with significantly stronger hypotheses. We will examine
Abel’s theorem in the next section of this project. Other major mathematicians worked hard during
the mid-1800s to prove other corrected variations on Cauchy’s Theorem I. This indicates the subtlety
of Cauchy’s error and the difficulty involved in fixing it!

3 Abel’s 1826 Paper

Abel was aware of the difficulties with Cauchy’s theorem on a series of continuous functions. He did
not identify the specific problem in Cauchy’s proof, but he was able to prove an important theorem
on the convergence of power series in his 1826 paper. Along the way, he proved other important
results. These ideas are the focus of this section of the project. We now turn to Abel’s paper, with
his first two theorems. As you read them, see if they remind you of convergence tests from your
Introductory Calculus course.

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

Theorem I If one denotes a series of positive quantities by ρ0, ρ1, ρ2 . . ., and the quotient
ρm+1

ρm
, for ever increasing values of m, approaches a limit α greater than 1, then the

series
c0ρ0 + c1ρ1 + c2ρ2 + · · ·+ cmρm + · · · ,

where cm is a quantity which, for ever increasing values of m, does not approach zero,
will be necessarily divergent.

Theorem II If in a series of positive quantities ρ0 + ρ1 + ρ2 + · · ·+ ρm + · · · the quotient
ρm+1

ρm
, for ever increasing values of m, approaches a limit α smaller than 1, then the

series
c0ρ0 + c1ρ1 + c2ρ2 + · · ·+ cmρm + · · · , (16)

where c0, c1, c2 etc. are quantities that are never greater than one, will be necessarily
convergent.9

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

9We have used c where Abel wrote ε in these theorems, in order to reduce confusion in modern ε arguments.
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Task 37 Interpret Abel’s Theorems I and II in the special case where cm = 1 for all m. What
name did we give these results in an Introductory Calculus course? Cauchy actually
gave these results in the special case where cm = 1 in his book; Abel generalized them
for his needs in Theorem IV later in his 1826 paper.

Abel did not give a proof of his first theorem, but he did supply a proof of his Theorem II, given
in the next excerpt from his paper. Read it carefully, because it needs some minor adjustments for
a modern level of rigor.

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

Indeed, by assumption, one may always take m large enough that ρm+1 < αρm, ρm+2 <

αρm+1, · · · ρm+n < αρm+n−1. It follows from there that ρm+k < αkρm, and consequently

ρm + ρm+1 + · · ·+ ρm+n < ρm
(
1 + α+ α2 + · · ·+ αn

)
<

ρm
1− α

, (17)

therefore, for all the more reason,

cmρm + cm+1ρm+1 + · · ·+ cm+nρm+n <
ρm

1− α
.

Now, since ρm+k < αkρm and α < 1, it is clear that ρm and consequently the sum

cmρm + cm+1ρm+1 + · · ·+ cm+nρm+n

will approach zero.
The above series [(16)] is therefore convergent.

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

This proof is largely correct, but has a flaw, as we shall see. Perhaps you have had a similar
experience in your own proof writing! Fortunately, we can make an adjustment and save Abel’s
proof.

Task 38 In his proof of Theorem II, Abel stated that “one may always take m large enough that
ρm+1 < αρm.” Use the example ρn =

n

2n
to show that this is not always true.

Task 39 You will correct part of Abel’s Theorem II proof in this task.

(a) Show that if lim ρm+1

ρm
< 1 then we can (i) find a number β such that lim ρm+1

ρm
<

β < 1, and (ii) find an integer N ∈ N for which m ≥ N implies that ρm+1 < βρm.
(b) Use part (a) and Abel’s ideas to show that the sequence (ρm) converges to 0.
(c) Use part (a) and Abel’s ideas to prove a statement analogous to (17).

Task 40 To understand Abel’s Theorem II statement completely, we need to remember to
interpret the statement where c0 etc. are quantities that are never greater than one”
carefully. To see this, set ρm = 1/2m and cm = −2m and show that the series

∑
ρmcm

diverges.
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Task 41 Based on the task above, let’s interpret Abel’s Theorem II hypotheses about the ck as
“the quantities |ck| are never greater than one.”With this adjustment,

(a) Write a modern version of Abel’s Theorem II.
(b) Use Abel’s proof method and your results from Task 39 to give a modern ϵ-N

proof of your modern version of Theorem II.

Abel did not give a proof of his first theorem, perhaps thinking it obvious. See if you can verify
his claim in the next task.

Task 42 Give a modern proof of Abel’s Theorem I. Here are some suggestions:

(a) First explain why the sequence (ρk) diverges with lim ρk = ∞.

Hint: Think about Abel’s argument relating ρm+k and ρm in his Theorem II
proof.

(b) Translate the hypothesis about the sequence (ck) to a statement about a subse-
quence (|cnk

|) of (|ck|).
(c) Draw a conclusion based on the limiting behavior of a subsequence of (|ckρk|)

corresponding to (|cnk
|).

Task 43 In the 1700s, Euler derived a power series for ln (x+ 1) :

x− x2

2
+
x3

3
− x4

4
+ · · · (18)

Use Abel’s theorems and standard sequence theorems to prove this series converges
at a given real number x when |x| < 1 and diverges when |x| > 1. Be sure to clearly
identify the ck, ρk and α values.

Task 44 Generalize Abel’s Theorem II to a theorem with hypothesis “(ck) bounded” in place
of “|ck| are never greater than one.”Prove your claim.

Task 45 Apply the theorems from Tasks 41, 44 and standard sequence theorems to determine
convergence or divergence of the series below. Be sure to clearly identify the ck, ρk
and α values and make sure the theorem hypotheses are met.

(a)
∑ 3k − 1

2k (k + 1)

(b)
∑ k + 1 + (−1)k

k + 1

3k+1

2k−1

(c)
∑
yk/k! for fixed, arbitrary y ∈ R.
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Task 46 Recall from the project introduction that Abel was interested in proving convergence
of the generalized binomial series (3)

1 +
m

1
x+

m (m− 1)

1 · 2
x2 +

m (m− 1) (m− 2)

1 · 2 · 3
x3 + . . .

for various m and x values. For m ∈ R but not necessarily an integer, use Abel’s
theorems to show that series (3) converges when |x| < 1 and diverges when |x| > 1.

We next return to Abel for his third theorem, which he needed as a tool for proving his major
power series result in Theorem IV.

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

(Abel Section 2 continued)

Theorem III On denoting by t0, t1, t2, . . . tm, . . . a series of any quantities whatever, if
pm = t0 + t1 + t2 + . . . tm is always less than a determined quantity10 B, one will have

r = c0t0 + c1t1 + c2t2 + · · ·+ cmtm < Bc0

where c0, c1, c2 . . . denote positive decreasing quantities.
Indeed, one has

t0 = p0, t1 = p1 − p0, t2 = p2 − p1, etc.

therefore
r = c0p0 + c1 (p1 − p0) + c2 (p2 − p1) + · · ·+ cm (pm − pm−1) (19)

or rather

r = p0 (c0 − c1) + p1 (c1 − c2) + · · ·+ pm−1 (cm−1 − cm) + pmcm (20)

But c0 − c1, c1 − c2, · · · are positive, so the quantity r will clearly be less than Bc0.

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

Let’s examine this result and Abel’s proof from a modern viewpoint.

Task 47 Rewrite the theorem statement with appropriate quantifiers, and clarify the phrase
“decreasing quantities.”

Task 48 Justify the algebraic rearrangement of terms in r, between (19) and (20).

Task 49 Justify Abel’s claim in his Theorem III proof that “quantity r will clearly be less than
Bc0.”

10We have used B where Abel wrote δ in these theorems, in order to reduce confusion in modern ϵ-δ proofs.
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Task 50 It will be helpful to have a version of this theorem with stronger conclusion |r| < Bc0
instead of r < Bc0. This stronger conclusion naturally requires a stronger hypothesis
on the partial sums pm. State and prove an “absolute value” version of Theorem III
with the stronger hypothesis |pk| < B for all k and conclusion |r| < Bc0. Abel’s
beautiful rearrangement of the terms in r will still be crucial for your proof!

Task 51 Consider the partial sums sm of series

1− 1

2
+

1

3
− 1

4
+

1

5
− 1

6
+ · · · (21)

(a) Use your “absolute value” version of Theorem III from Task 50 to prove that
|sm| < 1.01 for all m.

(b) For this same series (21), find m so that for any n we have |sm+n − sm| < 0.001,
and prove your claim using your “absolute value” version of Theorem III from
Task 50.
Hint: Choose t0, c0, B to align with the mth term of series (21).

The series (21) is an example of an alternating series, which you may recall from your Introductory
Calculus course. Here is a useful theorem for guaranteeing convergence of a certain class of alternating
series.

Theorem 2. If (dk) is a decreasing sequence of positive numbers with lim (dk) = 0, then the alter-
nating series

∑
(−1)k dk is convergent.

Task 52 Prove Theorem 2 using the Cauchy criterion, your “absolute value” version of Theorem
III, and the ideas used in Task 51 (b).

Task 53 Use Theorem 2 to prove the following series converge, or explain why the theorem
cannot be applied to the particular series.

(a)
∑∞

k=0 (−1)k
1

k + 1

(b) 2

1
− 3

2
+

4

3
− 5

4
+ · · ·

(c) 1− 1√
2
+

1√
3
− 1√

4
+

1√
5
− · · ·

Like Cauchy, Abel wanted to apply his results on numerical series to variable series, and to
address the issue of continuity. We investigate his efforts in the remainder of the project.

3.1 Abel’s power series theorem

After developing his first three theorems on numerical series, Abel considered the situation where
a function f was defined by an infinite series in terms of a variable α. In the theorem below11, he
stated an important result for power series.

11In Theorem IV and its proof, we use d where Abel wrote δ, in order to avoid confusion with ϵ-δ proofs.
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∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

Definition A function f (x) will be said to be a continuous function of x between the limits
x = a and x = b, if for any value of x contained between these limits, the quantity
f (x− β) , for ever decreasing values of β, approaches the limit f (x) .

Theorem IV If the series

f (α) = v0 + v1α+ v2α
2 + · · ·+ vmα

m + . . .

converges for a certain value d of α, it will also converge for every value smaller than d
and, for this kind of series, for ever decreasing values of β, the function f (α− β) will
approach the limit f (α), assuming that α is equal to or less than d.

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

We begin by examining the statement of Theorem IV. First notice that Abel was making two
claims. First, he claimed that the infinite series f (α) will “converge for every value smaller than d.”
From our previous readings, we suspect that this is not to be taken literally. Let’s take his meaning
on α to be: for every α value, 0 ≤ α < d where d is positive.

Abel’s second claim was that “the quantity f (α− β), for ever decreasing values of β, approaches
the limit f (α)” for 0 ≤ α ≤ d.

Task 54 Abel’s definition of continuity is essentially the same as Cauchy’s. To make this defi-
nition consistent with our modern definition, what do you think he meant by “for ever
decreasing values of β?” Rewrite his continuity claim with modern terminology. Be
careful with the special case α = d.

Task 55 Explain how Abel’s Theorem IV is a variant of Cauchy’s Theorem I, page 14. Be sure
to compare and contrast both the hypotheses and the conclusions.

Task 56 As a first application of this theorem, consider the power series (18), which we showed
converges for x = 1 in Task 53. For what other x values does Abel’s Theorem IV
guarantee convergence of this power series?

We next read Abel’s proof of his Theorem IV. As you read his proof, think about how you can
adjust it for a modern proof. In particular, notice how he used the symbol ω.
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∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

For brevity, in this memoir we will understand by ω a quantity which may be smaller than
any given quantity, however small.12

Theorem IV If the series

f (α) = v0 + v1α+ v2α
2 + · · ·+ vmα

m + . . .

converges for a certain value d of α, it will also converge for every value smaller than d
and, for this kind of series, for ever decreasing values of β, the function f (α− β) will
approach the limit f (α), assuming that α is equal to or less than d.

Suppose

v0 + v1α+ v2α
2 + · · ·+ vm−1α

m−1 = φ (α) ,

vmα
m + vm+1α

m+1 + vm+2α
m+2 + etc. · · · = ψ (α) ,

so
ψ (α) =

(α
d

)m
vmd

m +
(α
d

)m+1
vm+1d

m+1 + etc.,

therefore, from Theorem III, ψ (α) <
(α
d

)m
p where p denotes the greatest of the quantities

vmd
m, vmd

m + vm+1d
m+1, vmd

m + vm+1d
m+1 + vm+2d

m+2 etc. Therefore for every value
of α, equal to or less than d, one may take m large enough that one will have

ψ (α) = ω.

Now f (α) = φ (α) + ψ (α) , so f (α) − f (α− β) = φ (α) − φ (α− β) + ω. Further, φ (α)

is a polynomial in α, so one may take β small enough that

φ (α)− φ (α− β) = ω;

so also one has in the same way

f (α)− f (α− β) = ω,

which it was required to prove.

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

Task 57 What part of this proof is needed for Abel’s first claim, that the infinite series f (α)
will converge for 0 ≤ α < d? On what variables does ω depend for this part of his
proof? How can we translate Abel’s phrase “a quantity which may be smaller than any
given quantity, however small” for a modern proof?

Task 58 Abel let p denote the greatest of an infinite number of quantities. From a modern
point of view, how would you critique this?

12Abel put this remark into a footnote.
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3.2 Modernizing Abel’s proof that f (α) converges for α < d

Notice that Abel used Theorem III in his Theorem IV proof with an infinite sum, the remainder
term ψ (α), but the r in Theorem III involves a finite sum. Also observe that for a modern proof,
we can’t use his infinite series “tail” ψ (α) until we know it converges. Moreover, we don’t have a
candidate for this series sum, so a modern proof will need to use the Cauchy criterion. For these
reasons, let’s introduce the notation

φm (α) = v0 + v1α+ v2α
2 + · · ·+ vm−1α

m−1

ψm,n (α) = vmα
m + vm+1α

m+1 + vm+2α
m+2 + · · ·+ vm+n−1α

m+n−1.

Task 59 Show that for arbitrary α,m,n we have ψm,n (α) = φm+n (α)− φm (α).

We need to adjust Abel’s p definition for our modern proof with the Cauchy criterion as follows:

Pm = sup
{∣∣vmdm + vm+1d

m+1 + vm+2d
m+2 + · · ·+ vm+n−1d

m+n−1
∣∣ : n ∈ N

}
Observe that Pm depends only on d,m and the coefficients vk.

Task 60 Let ϵ > 0. Prove there exists N ∈ N such that Pm < ϵ/3 for all m ≥ N , using Task 22
and the Theorem IV hypotheses.

Task 61 Let m,n ∈ N and 0 ≤ α < d. Use Abel’s ideas from his Theorem IV proof and your
“absolute value” version of Theorem III from Task 50 to show that

|ψm,n (α)| ≤
(α
d

)m
Pm.

Be sure to make clear which factors in ψm,n (α) correspond to which ck and tk values
in Theorem III.

Task 62 Let α be fixed with 0 ≤ α < d. Use the task results above and the Cauchy criterion to
give a modern ϵ−N proof that the sequence of partial sums {φm (α)} converges. We
will call the sum f (α) , in keeping with Abel’s name for this convergent infinite series.

Task 62 gives us a modern proof that the infinite series f (α) in Theorem IV will converge for
0 ≤ α ≤ d. Now we tackle the second part of Abel’s proof regarding the continuity of f .

3.3 Modernizing Abel’s proof that f (α) is continuous for α ≤ d

To prove continuity with modern terminology, given α ≤ d and ϵ > 0 we need to find a δ > 0 so
that |β| < δ implies that |f (α− β)− f (α)| < ϵ. Observe that Abel used the symbol ω four times.
Recalling his statement “we will understand by ω a quantity which may be smaller than any given
quantity, however small,”we can see that he might not have meant for these four ω’s to be literally
identical.

Task 63 On what variables does ω depend for the last three times he used it?

Now that we know the infinite series f (α) converges from the first part of the proof, we can
safely use Abel’s infinite term remainder ψ (α), but we must take care to remember it depends on m
as well as α. When this is particularly important, we can use ψm (α) in place of ψ (α) for emphasis.
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Task 64 Let α be fixed with 0 ≤ α < d. Explain why ψm (α) = limn→∞ ψmn (α) .

The next task will help us modernize Abel’s claim that “f (α)−f (α− β) = φ (α)−φ (α− β)+ω.”

Task 65 Let m be arbitrary. Show that

|f (α)− f (α− β)| ≤ |φm (α)− φm (α− β)|+ |ψm (α)|+ |ψm (α− β)| .

For what β values is this valid?

We need to convert Abel’s ω statements into appropriate ϵ−δ statements. We need an ϵ bound on
|ψm (α)| and another bound on |φ (α)− φ (α− β)|. Less obviously, we need a bound on |ψm (α− β)|,
which Abel absorbed into one of his ω’s in the claim f (α)− f (α− β) = φ (α)− φ (α− β) + ω.

It turns out that the trickiest of these three bounds is for |ψm (α− β)| , because we need the
bound to work for all β with |β| < δ, not just a single β. To get this bound, look at your definitions
of ψm,n (α) and Pm just before Task 60. Notice Pm does not depend on n or α! In fact observe that

|ψm,n (α)| ≤
(α
d

)m
Pm (22)

for all n and for any α, 0 ≤ α ≤ d.

Task 66 For a given ϵ > 0 and 0 ≤ α ≤ d, find N ∈ N so that m ≥ N and 0 ≤ α− β ≤ d imply
that

|ψm (α− β)| < ϵ

3

The bound (22) and Task 60 should be helpful!

Task 67 Using a modern ϵ − δ argument with your results from the past few tasks, rewrite
Abel’s proof that the infinite series f (α) is continuous at each α for 0 ≤ α ≤ d.

Hint: Remember that φN (α) is a polynomial, hence continuous.

Congratulations, you have now worked your way through a very difficult and important theorem!
If you struggled at times, you are not alone. In 1863, the highly accomplished mathematician J.
Liouville (1809–1882) published a different proof of this theorem that he attributed to his friend J.
Dirichlet (1805–1859) [Liouville, 1863]. Liouville stated in his article that he confessed to Dirichlet
his confusion with Abel’s proof, and Dirichlet then gave his alternative explanation. Unfortunately,
Dirichlet died before he could publish his proof.

Now let’s use Abel’s results to analyze where a function defined as an infinite series is continuous.

Task 68 Define a function f by

f (x) = x− x2√
2
+
x3√
3
− x4√

4
+
x5√
5
− · · ·

Use Abel’s theorems to find x values at which f is continuous.
Hint: Recall Task 53.
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4 Conclusion

We have examined Cauchy’s Theorem I and Abel’s response to it using the series

sinx− 1

2
sin 2x+

1

3
sin 3x− · · · (23)

on a neighborhood of x = π. Part of the difficulty for Cauchy was that mathematicians had not yet
worked out the issues for an infinite series involving a variable x converging at a single x value, versus
converging uniformly for a set of x values. Here is a modern definition of uniform convergence for a
power series on a set A.

Definition 3. Suppose
∑∞

k=0 vkx
k is a power series, and define partial sum φm (x) =

∑m−1
k=0 vkx

k

for each m ∈ N. We say the series converges uniformly to f (x) on set A ⊂ R if for each ϵ > 0

there is a natural number K (ϵ) such that if n ≥ K (ϵ) then

|f (x)− φn (x)| < ϵ for all x ∈ A.

Note in particular that K (ϵ) is independent of the points x in A.

It turns out that Cauchy’s Theorem I is valid if we insist on uniform convergence of his series
functions un (x) on a set A. Part of the success of Abel’s Theorem IV proof is that it actually
shows uniform convergence on the set [0, d], even if Abel didn’t explicitly say so in 1826. Indeed, the
terminology for uniform convergence did not exist at the time.

Task 69 Carefully review your modern proof of the power series convergence on [0, d] for Abel’s
Theorem IV, and explain why the convergence is uniform.

Task 70 Prove that the geometric series converges uniformly to 1

1− x
on the set A =

[
−1

3
,
1

3

]
.

Hint: Use Cauchy’s expression (6) for the finite geometric series.

Often a series will converge “pointwise” at each x in a set, but will fail to converge uniformly.

Task 71 In this task you will show that the geometric series does not converge uniformly to
1

1− x
on (−1, 1).

(a) Carefully write out the negation of the uniform convergence definition for the
geometric series on (−1, 1) .

(b) Prove that the convergence of the geometric series to 1

1− x
on (−1, 1) is not

uniform.
Hint: Consider the sequence

(
(1/2)1/n

)
, which converges to 1.

As you might guess, the trigonometric series (23) does not converge uniformly to x/2 on set
(−π, π) . Moreover, it turns out that conditions for continuity and convergence of power series are
quite a bit different than conditions for continuity and convergence of a series of trigonometric
functions. These challenges would keep mathematicians busy in the decades after Cauchy’s Cours
d’analyse and Abel’s 1826 paper.
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Regarding the binomial series, Abel went on in his 1826 paper to prove a number of rigorous
convergence results for complex numbers x, which are outside the scope of this project.

Sadly, Abel would only have a few more years to work on mathematics, for he contracted tuber-
culosis while on his Paris visit, and died in 1829 at the age of 27. Nevertheless, in his short lifetime
he did an amazing amount of first class mathematics for which he has been much celebrated.
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Notes to Instructor

PSP Content: Topics and Goals
This Primary Source Project (PSP) is designed for a course in Real Analysis. It starts with Abel’s
concerns about infinite series in general and the amazing Fourier series x/2 =

∑
(−1)k sin (kx) /k to

give the students a quick hook into the topic of infinite series and immerse them into the problems
of the day. Then the project moves through the first section on infinite series in Cauchy’s Cours
d’Analyse, which reads a lot like most current analysis text introductions to infinite series. However,
he doesn’t quite phrase things in terms of ϵ-N language, so there are plenty of challenging details
for students to iron out. Cauchy finishes the section with a famous “near miss” Theorem I on the
continuity of an infinite series of continuous functions. We return to Abel, who gave a counterexample
to this theorem.

In the next section of the project, students work through several of Abel’s results, including a
slightly generalized ratio test, and then a clever rearrangement theorem which is often referred to
as Abel’s Lemma in modern books. This theorem is used, via some tasks, to prove the Alternating
Series Test from Introductory Calculus. Abel’s results are then used to prove his Theorem IV on
power series convergence, now often referred to as one of Abel’s theorems on infinite series, which is
a partial patch to Cauchy’s problematic Theorem I.

From this point, it would be natural for a analysis class to move into a discussion of power series
and intervals of convergence, and the various convergence tests not covered in this project, such as
the root test. The project also motivates the need to pin down the concept of uniform convergence
— the fundamental source of problems with Cauchy’s Theorem I. This topic is discussed briefly in
the project conclusion.

The specific content goals of this project are:

1. Develop a modern convergence definition with quantifiers for infinite series based on Cauchy’s
definition.

2. Analyze convergence for geometric and harmonic series using Cauchy’s arguments.

3. Develop and apply modern versions of the “Divergence Test,”the “Comparison Test ” and a
Cauchy condition for convergence based on Cauchy’s work.

4. Develop and apply modern versions of the “Ratio Test” and the “Alternating Series Test” based
on Abel’s work.

5. Develop modern proofs of Abel’s theorem on convergence and continuity of power series based
on Abel’s proofs.

Student Prerequisites
Students should have already done a rigorous study of sequences, limits, and continuity for real-valued
functions. In particular, students should know the Cauchy criterion for sequences. This equivalence
between Cauchy and convergent sequences in R is treated as obvious by Abel and Cauchy in this
project’s excerpts from their writing, and the project doesn’t dwell too much on this.
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PSP Design and Task Commentary
This project consists of four sections.

Section 1 Introduction

The discussion and examples here are largely to provoke thought in the students and motivate
the need for a systematic approach to series. Euler’s series (1), stimulated by the vibrating string
controversy, is a lovely gateway into Fourier series. A complete investigation of this topic deserves
plenty of time and is not the focus of this project. This series exposes a problem with Cauchy’s
Theorem I that we meet at the end of Section 2.

Section 2 Cauchy
Task 9 is important for giving students some historical perspective. There was no universal terminol-
ogy or notation for the magnitude/absolute value of a real number in the 1820’s, and both Abel and
Cauchy need to be read with this in mind. There are a number of tasks sprinkled throughout the
section establishing basic series properties that are not necessary for the flow of Cauchy’s arguments,
but which are useful elsewhere and provide good homework practice.

Many students struggle with the distinction between series and sequences, and Cauchy’s initial
expression of series as a sequence u0, u1, u2, . . . , un, un+1, . . . in his first excerpt may confuse some
students. The discussion and task immediately after this excerpt are designed to clear up any
confusion about this series naming convention of Cauchy’s. On the other hand, instructors may wish
to point out that this convention allows Cauchy to talk about divergent series without following into
the trap of writing

u0 + u1 + u2 + · · · .

Cauchy does start writing the sum of convergent series this way in the fourth excerpt.
Task 35 is difficult, but some wrestling with it should give students some insight into Cauchy’s

difficulty with uniform versus pointwise behavior. The task also motivates Abel’s program, investi-
gated in Section 3 of the PSP. However, the task is not intended to start a comprehensive treatment
of convergence of function series, unless the instructor chooses to end the PSP after Section 2. For
more on teaching with Cauchy’s Theorem I and his proof attempt, see Fred Rickey’s excellent article
“Cauchy’s Wrong Proof,” available at http://fredrickey.info/hm/CalcNotes/CauchyWrgPr.pdf.

Section 3 Abel
Abel did not need Theorems I and II to prove his Theorems III, IV, so their proofs can be treated
lightly if desired. On the other hand, as suggested in Task 37, they provide a “backdoor” approach
to the important Ratio Test. While Cauchy listed this theorem in Section 6.2 of his Cours d’Analyse,
he did not give its proof there.

As noted in the discussion before inequality (22), the quantity p does not depend on n or α,
and in some sense this inequality captures the uniformity of convergence. Indeed, elements of Abel’s
proof of Theorem IV are very similar to the modern proof that a sequence of continuous functions,
converging uniformly to a function f , result in a continuous limit function f . Abel tried to stretch
his proof to the case where the vm are continuous functions in a following Theorem V, but his proof
fails due to the uniform convergence issue and lack of conditions on the vm functions.
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The rest of Abel’s proof for the Binomial Theorem involves copious algebraic manipulation of
complex numbers, and is not addressed in this project.

Section 4 Conclusion
A modern definition of uniform convergence is given and students do some tasks using the definition.
They are asked to reflect on Cauchy’s Theorem I and Abel’s Theorem IV with regard to this uniform
convergence concept, providing some synthesis of the ideas from the project. This can provide the
instructor a launch into a full treatment of function convergence after the PSP.

Suggestions for Classroom Implementation
The complete PSP is roughly a four week project, while the first two sections can be done in around
two weeks, under the following methodology (basically David Pengelley’s “A, B, C” method described
on his website https://web.nmsu.edu/~davidp/):

1. Students do some advanced reading and light preparatory tasks before each class. This should
be counted as part of the project grade to ensure students take it seriously. Be careful not to
get carried away with the tasks or your grading load will get out of hand! Some instructor
have students write questions or summaries based on the reading.

2. Class time is largely dedicated to students working in groups on the project - reading the
material and working tasks. As they work through the project, the instructor circulates through
the groups asking questions and giving hints or explanations as needed. Occasional student
presentations may be appropriate. Occasional full class guided discussions may be appropriate,
particularly for the beginning and end of class, and for difficult sections of the project. I have
found that a “participation” grade suffices for this component of the student work. Some
instructors collect the work. If a student misses class, I have them write up solutions to the
tasks they missed. This is usually a good incentive not to miss class!

3. Some tasks are assigned for students to do and write up outside of class. Careful grading of
these tasks is very useful, both to students and faculty. The time spent grading can replace
time an instructor might otherwise spend preparing for a lecture.

If time does not permit a full implementation with this methodology, instructors can use more
class time for guided discussion and less group work for difficult parts of the project.

LATEXcode of this entire PSP is available from the author by request to facilitate preparation of
‘in-class task sheets’ based on tasks included in the project. The PSP itself can also be modified by
instructors as desired to better suit their goals for the course.

Sample Implementation Schedule (based on a 50-minute class period)
The complete PSP is roughly a four week project, while the first two sections can be done in around
two weeks (ending with Day 6 below).

Students read through the introductory material and first excerpt and do Tasks 1–3 before the
first class. After discussing their results at the beginning of Class 1, students read the second Abel
excerpt, do Task 4, read the first Cauchy excerpt and work on Tasks 6, 7. Task 5 may be assigned
for homework.
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As preparation for Class 2, students do Tasks 8, 9. After discussing their results at the beginning
of Class 2, students work on and discuss Tasks 10, 11, 13a. Tasks 12, 13b may be assigned for
homework.

As preparation for Class 3, students read the second Cauchy excerpt on page 2 and do Task 14.
After discussing their results at the beginning of Class 3, students work on and discuss Tasks 15, 16,
17, 18a. Task 18b,c can be assigned for homework.

As preparation for Class 4, students do Tasks 19,20. After discussing their results at the beginning
of Class 4, students work on and discuss Tasks 21, 23. Then they read the third Cauchy excerpt and
work on Tasks 25, 26, 27. Tasks 22, 24, 27 can be assigned for homework.

As preparation for Class 5, students read the third Cauchy excerpt and do Task 28. After
discussing their results at the beginning of Class 5, students work on and discuss Tasks 29, 30, 31,
32, 33a. Task 33b,c can be assigned for homework.

As preparation for Class 6, students read the fourth Cauchy excerpt and do Task 34. After
discussing their results at the beginning of Class 6, students work on and discuss Task 35 (this is
hard and probably needs a brief class discussion led by the professor, but resist the temptation to
give a full proof and discussion of uniform vs. pointwise behavior). Then students read the Abel
excerpt on “exceptions” to Cauchy’s theorem, and work on Task 36. Task 36 can be assigned for
homework.

As preparation for Class 7, students read the first Abel excerpt in Section 3 and do Task 37.
After discussing their results at the beginning of Class 7, students read the next Abel excerpt from
his Theorem II proof, and work on Tasks 38, 39, 40, 41. Task 41 can be assigned for homework.

As preparation for Class 8, students do Task 42. After discussing their results at the beginning
of Class 8, students work on Tasks 43,44,45a. Task 45bc,46 can be assigned for homework.

As preparation for Class 9, students read the Abel excerpt on his Theorem III and do Task 47.
After discussing their results at the beginning of Class 9, students work on Tasks 48, 49, 50, 51.

As preparation for Class 10, students do Task 52. After discussing their results at the beginning
of Class 10, students do Task 53a and read the next Abel excerpt on his Theorem IV, and work on
Tasks 54, 55, 56. Task 53b,c can be assigned for homework.

As preparation for Class 11, students read the Abel excerpt on his Theorem IV proof and do
Tasks 57, 58. After discussing their results at the beginning of Class 11, students work on Tasks 59,
60, 61. Task 62 can be assigned for homework.

As preparation for Class 12, students do Tasks 63, 64. After discussing their results at the
beginning of Class 12, students work on Tasks 65, 66, 67. Task 68 can be assigned for homework.

As preparation for Class 13, students read the first part of the PSP Conclusion, and do Task 69.
After discussing their results at the beginning of Class 13, students finish the PSP.

Connections to other Primary Source Projects
The following additional projects based on primary sources are also freely available for use in an in-
troductory real analysis course; the PSP author name for each is listed parenthetically, along with the
project topic if this is not evident from the PSP title. Shorter PSPs that can be completed in at most
2 class periods are designated with an asterisk (*). Classroom-ready versions of the last two projects
listed can be downloaded from https://digitalcommons.ursinus.edu/triumphs\_topology; all
other listed projects are available at https://digitalcommons.ursinus.edu/triumphs\_analysis.
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• Why be so Critical? 19th Century Mathematics and the Origins of Analysis* (Janet Heine
Barnett)

• Investigations into Bolzano’s Bounded Set Theorem (David Ruch)
• Stitching Dedekind Cuts to Construct the Real Numbers (Michael Saclolo)

Also suitable for use in an Introduction to Proofs course.
• Investigations Into d’Alembert’s Definition of Limit ∗ (David Ruch)

A second version of this project suitable for use in a Calculus 2 course is also available.
• Bolzano on Continuity and the Intermediate Value Theorem (David Ruch)
• An Introduction to a Rigorous Definition of Derivative (David Ruch)
• Rigorous Debates over Debatable Rigor: Monster Functions in Real (Janet Heine Barnett;

properties of derivatives, Intermediate Value Property)
• The Definite Integrals of Cauchy and Riemann (David Ruch)
• Henri Lebesgue and the Development of the Integral Concept* (Janet Heine Barnett)
• Euler’s Rediscovery of e ∗ (David Ruch; sequence convergence, series & sequence expressions

for e)
• Abel and Cauchy on a Rigorous Approach to Infinite Series (David Ruch)
• The Cantor set before Cantor* (Nicholas A. Scoville)

Also suitable for use in a course on topology.
• Topology from Analysis* (Nicholas A. Scoville)

Also suitable for use in a course on topology.

Recommendations for Further Reading
The articles in [Jahnke, 2003] and [Bottazzini, 1986] give some perspective on other 19th century
works in analysis.
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