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Simulations of the angular dependence of the dipole-dipole interaction among

Rydberg atoms

Jacob L. Bigelow,1 Jacob T. Paul,1 Matan Peleg,1 Veronica L. Sanford,1 Thomas J. Carroll,1 and Michael W. Noel2

1Department of Physics and Astronomy, Ursinus College, Collegeville, PA 19426.
2Department of Physics, Bryn Mawr College, Bryn Mawr, PA 19010.

(Dated: June 3, 2016)

The dipole-dipole interaction between two Rydberg atoms depends on the relative orientation
of the atoms and on the change in the magnetic quantum number. We simulate the effect of this
anisotropy on the energy transport in an amorphous many atom system subject to a homogeneous
applied electric field. We consider two experimentally feasible geometries and find that the effects
should be measurable in current generation imaging experiments. In both geometries atoms of
p character are localized to a small region of space which is immersed in a larger region that is
filled with atoms of s character. Energy transfer due to the dipole-dipole interaction can lead to
a spread of p character into the region initially occupied by s atoms. Over long timescales the
energy transport is confined to the volume near the border of the p region which suggests Anderson
localization. We calculate a correlation length of 6.3 µm for one particular geometry.

PACS numbers: 32.80.Ee, 32.60.+i

I. INTRODUCTION

The energy exchange among Rydberg atoms has gar-
nered great interest both as a probe of fundamental quan-
tum dynamics and as a potential way to model other
physical systems. The strong dipolar interactions among
Rydberg atoms can block all but one excitation in a group
of atoms, leading to a collective two-level system [1–3].
These “super-atoms”, which could be used as qubits,
have recently been observed and characterized [4, 5]. The
control of Rydberg atoms has also made progress at the
single atom level. Coherent coupling between a pair of
Rydberg atoms was directly measured revealing both the
1/r3 dependence of the dipole-dipole interaction and the
1/r6 dependence of the van der Waals interactions [6, 7].
Systems of Rydberg atoms have been proposed as quan-
tum simulators of frustrated magnets and “quantum spin
ices” [8, 9]. Coherent excitation hopping has been ob-
served in a chain of three Rydberg atoms, pointing to-
ward the use of Rydberg systems as quantum simulators
of spin dynamics [10]. The energy transport in such sys-
tems has been studied in simulation, for example by in-
vestigating the effect of randomness on energy transport
in a lattice [11] or exploring the importance of dissipa-
tion and correlations [12]. Understanding the dynamics
of energy transport in systems of cold Rydberg atoms
will be important when using these systems for quantum
information tasks.
The energy exchange between a pair of Rydberg atoms

is mediated by the dipole-dipole interaction,

V (r) =
µ1 · µ2 − 3(µ1 · R̂)(µ2 · R̂)

R3
, (1)

where R is the separation vector between the atoms and
µi are the electric dipole matrix elements connecting the
initial and final states for each atom. The external elec-
tric field fixes the quantization axis. The dependence of

the interaction on θ, the zenith angle between the quan-
tization axis and R̂, arises from the second term in the
numerator of Eq. (1) [13]. If the applied electric field is
homogeneous, the three possibilities for the θ dependence
are, for each possible combination of ∆mj1 and ∆mj2:

∆mj1 +∆mj2 = 0 :

f0(θ) = (1− 3 cos2 θ)/2, (2)

∆mj1 +∆mj2 = ±1 :

f1(θ) = (3 sin θ cos θ)/
√
2, (3)

∆mj1 +∆mj2 = ±2 :

f2(θ) = (3 sin2 θ)/2. (4)

Experimental evidence for the angular dependence of
the dipole-dipole interaction was presented in [13] by
confining Rydberg atoms to a one dimensional sam-
ple. Recently, Ravets et al. have directly measured
the anisotropy by restricting the dipole-dipole interac-
tion to one channel and considering only two atoms; they
find good agreement with the predicted angular depen-
dence [14]. In a similar system of magnetic spins, the
angular dependence of the dipole-dipole interaction was
observed to create an anisotropic deformation in the ex-
pansion of a Bose-Einstein condensate of chromium [15]
and dysprosium [16]. An Erbium condensate exhibited
a d-wave collapse when the scattering length was tuned
below a critical value using a Feschbach resonance [17].
A number of recent experiments have studied Rydberg

systems by imaging the spatial distribution of Rydberg
atoms as a function of time. If the imaging technique
is state selective, such experiments can measure the spa-
tial and temporal dependence of the energy transport.
Imaging experiments have been used to study correla-
tions due to the dipole blockade [18, 19]. The evolution
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of a cloud of Rydberg atoms toward an ultracold plasma
has been imaged by scattering light from core ions [20].
The diffusion of energy throughout an ultracold gas of
Rydberg atoms has been observed, with sufficient spatial
and temporal resolution to extract a diffusion rate [21].
The exchange of energy between two spatially separated
groups of atoms has been imaged [22].
Motivated by recent imaging results, we simulate the

time evolution of the energy exchange among Rydberg
atoms by numerically solving the Schrödinger equation.
Our model includes the full angular dependence of the
dipole-dipole interaction in the many atom regime. With
relatively simple and experimentally accessible geome-
tries, we find that it should be possible to observe the
effect of the anisotropy on the energy transport.

II. MODEL

We consider an amorphous sample of Rydberg atoms
in the presence of a static electric field. For concreteness,
we focus our attention on the energy exchange

p3/2,|mj|=3/2 + s1/2 → s1/2 + p3/2,|mj|=3/2, (5)

which is often called the always resonant channel as the
interaction can proceed regardless of the value of the ex-
ternal electric field, though a field inhomogeneity can
shift this interaction away from resonance [22]. An ex-
ample is shown in the Stark map of Fig. 1 for Rb 39s1/2
and 39p3/2 states. This interaction is advantageous be-
cause it has large dipole moments (∼800 ea0) and does
not require precise tuning of the electric field.
Since the s atoms have |mj | = 1/2 then ∆mj cannot

be zero for either atom. Thus the sum ∆mj1+∆mj2 = 0
or ±2 but the ±1 case is eliminated. By choosing the di-
rection of an applied static electric field we fix the quan-
tization axis and hence the relative orientation angle of
the Rydberg atoms. Because of the anisotropy of Eq. (2)
and Eq. (4), the energy transport will be more efficient
for particular relative orientation angles. The interaction
between the atoms will be strongest when θ = π/2.
Experimentally, one could selectively excite the

p3/2,|mj|=3/2 state by applying a small electric field,
which splits the two |mj | states. One caution is that
at low applied fields the p3/2, |mj | = 1/2 state is close
in energy to the |mj | = 3/2 state. In this case the s1/2
state could couple off-resonantly by the interaction

p3/2,|mj|=3/2 + s1/2 → s1/2 + p3/2,|mj|=1/2. (6)

This would introduce the possibility of ∆mj = ±1 in-
teractions, which would diminish the visibility of the
anisotropic energy transport as there would no longer
be a preferred angle.
In order to maximize the number of s and p atoms that

we can model, we do not include the ground state or in-
teraction with the excitation lasers. Energy exchange
during the laser excitation has been shown to play a role

Figure 1. (color online) Stark map showing an example of the
dipole-dipole interaction s+p → p+ s. This energy exchange
is “always resonant” provided that the applied static electric
field is spatially homogeneous.

in the observed state mixing in some experiments [23]. In
our model, we consider relatively short excitation pulses
that provide a well-defined starting time for the inter-
action and minimal opportunity for dipole-dipole energy
exchange during excitation.
The Hamiltonian for our system in a homogeneous

electric field is

Ĥij =
∑

i6=j

µ2

R3
ij

[

f0(θ)
(

σ̂i
p+s+σ̂

j
s+p+ + σ̂i

p−s−σ̂
j
s−p−

)

+

f2(θ)
(

σ̂i
p+s+σ̂

j
s−p− + σ̂i

p−s−σ̂
j
s+p+

)

+H.c.

]

, (7)

where µ is the dipole moment connecting the s and p
states, Rij is the distance between the ith and jth atoms,
and σ̂i

x±y± is an operator that changes the state of the ith

atom from |x±〉 to |y±〉. The plus and minus signs denote
the positive and negative values of mj for each state; for
example, σ̂p+s+ takes an atom from |p3/2,mj = +3/2〉 to
|s1/2,mj = +1/2〉.
The Hamiltonian matrix generated by Eq. (7) will be

quite large even for relatively small numbers of atoms
because we must include all possible mj states for each
atom. The size of the matrix is

N =

(

n

ns

)

2n, (8)

where n is the total number of atoms and ns is the num-
ber of s atoms. We consider our initial state to be a
superposition of all possible mj states for our initially
excited population of s and p atoms. Since we are mod-
eling an amorphous sample and wish to average over
both space and time, we simulate thousands of instances.
With available local and NSF XSEDE [24] supercomput-
ing resources, we can achieve this for matrices N . 105.
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Given this practical limit, if we simulate 3 p atoms we
can include at most 6 additional s atoms. For one or two
p atoms we can include up to 11 or 8 s atoms, respec-
tively. In this work, we include cases the following cases:
one p atom with 6, 7, 8, and 9 s atoms and two p atoms
with 5, 6, 7, and 8 s atoms.

III. RESULTS AND DISCUSSION

We model two geometries, both of which localize a
small number of p atoms in a larger group of s atoms.
We consider a sphere of p atoms localized at the end of
a long and narrow cylinder of s atoms. This restricts the
energy transport to a roughly one dimensional geometry.
We also consider a thin disc of s atoms with a small re-
gion of p atoms in the center, which allows us to image
energy transport in two dimensions.
In each case we simulate the time evolution in steps

of < 0.1 µs. At each time step, we store the probability
for each atom to be in either the s or the p state. We
average the results of multiple runs together by binning
the probabilities by the atom’s position. This generates
a map of the energy transport as a function of position,
as shown in Fig. 2 and Fig. 5.

A. One dimensional case: cylindrical geometry

We randomly place p atoms in a spherical volume of
diameter 10 µm. The spherical volume is at one end of a
cylinder of the same diameter and length 60 µm, in which
we randomly place s atoms. Such a configuration could
be achieved with a multi-step excitation such as the one
described in [25]. The overlap of two perpendicular laser
beams used to excite p atoms would define a localized
volume represented by our spherical volume. Another
laser beam, collinear with one of the p-excitation beams
and exciting s atoms, would define a roughly cylindrical
volume.
Since ∆mj 6= 0, the angular dependence of Eq. (3) is

not possible and the only θ dependence is from Eq. (2)
or Eq. (4). If the electric field is perpendicular to our
cylinder, then θ for a given pair of atoms is likely to
be near π/2. At this angle the magnitude of Eq. (2)
is f0(π/2) = 1/2 and the magnitude of Eq. (4) is at a
maximum value f2(π/2) = 3/2.
If the electric field is parallel to our cylinder, then θ

for a given pair of atoms is likely to be near zero. At this
angle the magnitude of Eq. (2) is f0(π/2) = −1 while the
magnitude of Eq. (4) is at a minimum value f2(π/2) = 0.
The contribution of the angular dependence to the overall
coupling between the atoms is on average larger for angles
near π/2. Thus, we expect that for a perpendicular field
we should have more efficient energy transport along the
cylinder.
We run our simulation both for the case of an elec-

tric field parallel to the cylindrical excitation volume,
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Figure 2. (color online) Expansion of p character from the
initial spherical volume at left into the cylindrical volume ini-
tially populated with only s atoms. The probability of de-
tecting a p atom at a position is normalized to the number of
atoms excited at that position over all simulation runs. The
color scale is given by the legend, with redder colors indicating
more p character and bluer colors indicating less p character.
Horizontally adjacent images are generated at the same time
step for direct comparison. (a) The expansion when an elec-
tric field E0r̂ (perpendicular to the beam) is applied. (b)
The expansion when an electric field E0ẑ (along the beam) is
applied. The expansion in the axial case is evidently slower
than the expansion in the perpendicular case due to the an-
gular dependence of the energy exchange. Note that the color
scale has been chosen to enhance contrast at low probability.

~E = E0ẑ, and an electric field perpendicular to the cylin-

drical excitation volume, ~E = E0r̂. The results are shown
in Fig. 2, where all different simulation cases are aver-
aged. Each column in Fig. 2 shows the diffusion of p
character along the cylinder at four different times. The
diffusion is clearly faster in the case of a perpendicular
field (Fig. 2(a)) as compared to the case of a parallel field
(Fig. 2(b)).

It is interesting to note that there is not much dif-
ference in the total energy exchange between these two
cases. At positions near the right end of the cylinder,
there is more p character in Fig. 2(a). For positions near
the left end of the cylinder, there is more p character in
Fig. 2(b). This is because pairs of atoms comprised of a
p atom in the initially populated sphere and a nearby s
atom will not have their relative orientation angle con-
strained by the cylindrical geometry. In both cases of
field direction, these pairs of atoms should exchange en-
ergy efficiently. However, for the case of Fig. 2(a), initial
s atoms near the left end of the cylinder that have mixed
with significant p character can more efficiently transport
their energy farther along the cylinder.

One of the striking features of Fig. 2(a) and (b) is that
the energy transport does not proceed very far down the
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Figure 3. (color online) (a) Integrated probability of detect-
ing a p atom as a function of position along the length of the
cylinder for the case which includes 2 p atoms and 8 s atoms.
Most of the expansion of p probability happens in the first
microsecond, with little subsequent change. (b) Width as a
function of time for the distribution shown in (a) and other se-
lected cases. The width is measured at 0.2 ×maximum height
so as to be sensitive to the small changes in the p probability
at large z. The rapid change at early times plateaus sharply
suggesting localization. The electric field in both (a) and (b)
is in the r̂ direction, as in Fig. 2(a).

cylinder. The color scale is chosen to enhance the con-
trast at the low probability end of the scale; considering
this there is evidently little change between t = 0.5 µs
and t = 5.0 µs.
We examine this more quantitatively in Fig. 3, where

the electric field is in the transverse (r̂) direction for all
cases. For Fig. 3(a) we integrate the p probability across
the cylinder at each z and this integrated p probability is
shown for five different times for the simulated case of 2 p
atoms and 8 s atoms. Most of the increase in the width
of the distribution occurs for t < 1 µs. This is clearly
displayed in Fig. 3(b) for a variety of selected cases. In all
cases the width rapidly increases at early times and then
sharply plateaus. While we have explored only a small
region of parameter space for low numbers of atoms, a
trend is visible in these results. The cases in which the
ratio of s atoms to p atoms is largest display the flattest
plateaus, while those cases with a smaller ratio still have
a slight upward trend at later times.
The results of Fig. 2 and Fig. 3 suggest Anderson lo-

calization [26] of the p character. In order to characterize
the localization observed here, we numerically calculate
the intensity-intensity correlation function

〈|ψE(~r)|2|ψE(~r
′)|2〉 (9)

for each eigenfunction ψE(~r) of our system. We bin the
results by energy and position from∼ 104 simulation runs
for the 1 p and 7 s case. A portion of the resulting graph
is shown in the inset of Fig. 4, which shows the correlation
of Eq. (9) as a function of the distance |~r − ~r ′| and the
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Figure 4. (color online) The intensity-intensity correlation of
Eq. (9) for the narrow band of eigenenergies in the middle of
the inset, which show some extended correlation. The data
here are from the 1 p and 7 s atom case for the cylindrical
geometry discussed in the text. The solid red line is a fit
to an exponential decay which yields a localization length of
∼6.3 µm.

binned eigenenergies. Only a narrow band of energies
show any extended correlation; these data are graphed
as the blue points in Fig. 4. The solid red line in Fig. 4
is a fit to the function

A exp
(

−|~r − ~r ′|
ξ(E)

)

, (10)

where A is a constant and ξ(E) is the localization length.
The fit in Fig. 4 yields a localization length of ξ ∼ 6.3 µm.
Robicheaux and Gill [11] have investigated the effects

of randomness on energy transport in one, two, and
three-dimensional lattices of s atoms with one p atom.
They randomly perturbed the positions of the atoms or
the filling of the lattice and then systematically stud-
ied the effect of randomness by examining the energy
transport for a range of perturbation sizes. In the one-
dimensional case, they find that the p excitation is local-
ized for every eigenstate even for weak randomness. The
degree of localization was found to increase with the size
of the random perturbation. Our amorphous system is
a similar geometry to their maximally random case and
our results are in general agreement with Robicheaux and
Gill, though our system includes some additional ran-
domness due to the angular dependence and the variable
relative orientations of the atoms.

B. Two dimensional case: disc geometry

We randomly place s atoms in a disc of diameter 60 µm
and thickness 5 µm and p atoms only in the central re-
gion of the disc with diameter 10 µm. We examine the
energy transport when the applied electric field points
perpendicular to the disc in the z direction and when it
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Figure 5. (color online) Expansion of p character from the
initial central volume into the planar disc initially populated
with only s atoms. The color scale is given by the legend
in Fig. 2, with redder colors indicating more p character and
bluer colors indicating less p character. Horizontally adjacent
images are generated at the same time step for direct com-
parison. The orientation of the x, y, and z axes is given by
the inset at the upper left. The disc lies in the xy plane.
(a) The expansion when an electric field E0x̂ is applied. (b)
The expansion when an electric field E0ŷ is applied. (c) The
expansion when an electric field E0ẑ is applied. In (a) the dif-
fusion of p character is faster in the y direction, while in (b) it
is faster in the x direction. This is consistent with the angular
dependence of f0(θ) and f2(θ) as described in the main text.

points parallel to the plane of the disc in either the x or
y direction.
The results of the simulation are shown in Fig. 5, where

all simulation cases are averaged. Each column shows
the diffusion of p character away from the central region
for the case of a uniform electric field pointing in the
x (Fig. 5(a)), y (Fig. 5(b)), or z direction (Fig. 5(c)).
In Fig. 5(a) and (b) the diffusion of energy is asymmet-
ric. This is because when the field points in the x or y
direction, different pairs of atoms will have different rel-
ative orientation angles. When the field points in the x
(y) direction, the maximum rate of diffusion will be in
the y (x) direction. Similar to the previous discussion of
energy transport along the cylinder, this is because the
angular dependence will be a maximum when the rela-
tive orientation angle is π/2. When the field points in
the z direction, the relative orientation angle θ between
any pair of atoms is always π/2. The angular dependence
will not distinguish any direction of energy diffusion in
the plane of the disc. This isotropic diffusion is evident
in Fig. 5(c).

IV. CONCLUSION

Previous investigations have confirmed the anisotropic
nature of the dipole-dipole interaction between pairs of
atoms. We have investigated the consequence of this
anisotropic interaction by simulating the dynamics of en-
ergy transport in a cold gas of Rydberg atoms. Our
model solves the Schrödinger equation numerically and
includes the full many body wave function. We find that
the rate of energy transport depends both on the ge-
ometry of the atomic sample and on the angular depen-
dence of the energy exchange as determined by direc-
tion of the applied electric field and the various ∆mj

combinations possible in the interaction. In our pseudo-
one-dimensional model, we see the signature of Anderson
localization and are able to extract a localization length
for some cases. Our simulation results show that cur-
rent generation imaging experiments should be able to
measure the effects of the anisotropy in accessible atomic
geometries. This anisotropy could be used to tune the
energy transport in a cold Rydberg gas, making these
systems useful as a quantum simulators.
This work was based upon work supported by the Na-

tional Science Foundation under Grants No. 1205895 and
No. 1205897.
This work used the Extreme Science and Engineering

Discovery Environment (XSEDE), which is supported by
National Science Foundation grant number OCI-1053575.
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