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Euler’s Square Root Laws for Negative Numbers

David Ruch∗

December 17, 2019

1 Introduction

We learn in elementary algebra that the square root product law

√
a ·
√
b =
√
ab (1)

is valid for any positive real numbers a, b. For example,
√
2 ·
√
3 =

√
6. An important question

for the study of complex variables is this: will this product law be valid when a and b are complex
numbers? The great Leonard Euler discussed some aspects of this question in his 1770 book Elements
of Algebra, which was written as a textbook [Euler, 1770]. However, some of his statements drew
criticism [Martinez, 2007], as we shall see in the next section.

2 Euler’s Introduction to Imaginary Numbers

In the following passage with excerpts from Sections 139—148 of Chapter XIII, entitled Of Impossible
or Imaginary Quantities, Euler meant the quantity a to be a positive number.

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

The squares of numbers, negative as well as positive, are always positive.

...To extract the root of a negative number, a great diffi culty arises; since there is no assignable
number, the square of which would be a negative quantity. Suppose, for example, that we
wished to extract the root of −4; we here require such as number as, when multiplied by
itself, would produce −4; now, this number is neither +2 nor −2, because the square both
of −2 and of −2 is +4, and not −4.

We must therefore conclude, that the square root of a negative number cannot be either a
positive number or a negative number, since the squares of negative numbers also take the
sign plus: consequently, the root in question must belong to an entirely distinct species of
numbers; as it cannot be ranked either among positive, or negative numbers.

...

∗Department of Mathematical and Computer Sciences, Metropolitan State University of Denver, Denver, CO;
ruch@msudenver.edu
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We are led to the idea of numbers, which from their nature are impossible; and therefore they
are usually called imaginary quantities, because they exist merely in the imagination.1

All such expressions as
√
−1,
√
−2,
√
−3,
√
−4, etc. are consequently impossible, or imaginary

numbers, since they represent roots of negative quantities.

...

The square of
√
−3, for example, or the product of

√
−3 and

√
−3, must be −3; and in

general, that by multiplying
√
−a by

√
−a or by taking the square of

√
−a, we obtain −a.

...

The root of a times −1, or
√
−a, is equal to

√
a multiplied by

√
−1; but

√
a is a possible

or real number, consequently the whole impossibility of an imaginary number may be always
reduced to

√
−1; for this reason,

√
−4 is equal to

√
4 multiplied by

√
−1.

...

Moreover, as
√
a multiplied by

√
b makes

√
ab, we shall have

√
6 for the value of

√
−2

multiplied by
√
−3.

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

Some mathematicians have argued that Euler made a mistake here:
√
−2 ·

√
−3 6=

√
6. To see

why, carry out the following task.

Task 1 Which statement in Euler’s passages above allows us to write
√
−2 =

√
2 ·
√
−1?

(a) Write a general defining equation for
√
−a for positive a based on the excerpt above.

Indicate which excerpt statement you are using.

(b) Use part (a) to first rewrite
√
−2 and

√
−3 in terms of

√
−1. Then compute

√
−2 ·

√
−3

with these facts to show that √
−2 ·
√
−3 = −

√
6. (2)

(c) Explain why all this leads to the apparently nonsensical statement: −
√
6 =
√
6.

To decide whether Euler really made a mistake here, we should read some more on his notion
of square roots2. In what follows from Section 150 of his Elements of Algebra, remember that Euler
used a to indicate a positive real number.

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

The square root of any number has always two values, one positive and one negative; that√
4, for example, is both +2 and −2, and that, in general, we may take −

√
a as well as +

√
a

for the square root of a. This remark applies also to imaginary numbers; the square root of
−a is both +

√
−a and −

√
−a.

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

1Descartes was the first to use the term imaginary, in a 1637 discussion of roots of cubic equations.
2See [Martinez, 2007] for a full and fascinating discussion of this issue.
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This passage suggests that we have to be careful when using and interpreting the term “square
root”and the radical symbol “√ ”. In particular, when interpreting Euler’s statement that “we shall
have

√
6 for the value of

√
−2 multiplied by

√
−3”, we should consider whether to use +

√
−2 or

−
√
−2 for

√
−2, and similarly for the values of

√
−3 and

√
6. In this way, we can try to to make

sense of the square root product law for negative numbers.

Task 2 If we replace each
√
x by +

√
x or −

√
x in

√
−2 ·

√
−3 =

√
6, explain why there are eight

possible ways to interpret this equality. Write out all eight ways.

We also note that mathematicians agree that

+
√
−a =

(
+
√
a
) (
+
√
−1
)
and −

√
−a =

(
+
√
a
) (
−
√
−1
)
and b

(
−
√
−1
)
= (−b)

(
+
√
−1
)

(3)

are valid rules for each positive a and real number b.

Task 3 Carry out this task without using the square root product law for negative numbers. You will
need to use the rules in (3) as well as the square root product law for positive numbers (1).

(a) Using+,− signs before√ signs for clarity, find four different sets of values for
{√
−2,
√
−3,
√
6
}

for which
√
−2 ·
√
−3 =

√
6 is valid.

(b) Using+,− signs before√ signs for clarity, find four different sets of values for
{√
−2,
√
−3,
√
6
}

for which
√
−2 ·
√
−3 =

√
6 is not valid.

Task 4 Explain in your own words why the square root product law
√
−a ·

√
−b =

√
ab is valid if we

interpret it properly with Euler’s multiple root meaning of square roots.

Task 5 Now consider the statement
√
5 ·
√
−7 =

√
−35 with Euler’s multiple root meaning of square

roots. Carry out this task without using the square root product law for negative numbers.
You will need to use the rules in (3) as well as the square root product law for positive numbers
(1).

(a) Using+,− signs before√ signs for clarity, find four different sets of values for
{√
5,
√
−7,
√
−35

}
for which

√
5 ·
√
−7 =

√
−35 is valid.

(b) Using+,− signs before√ signs for clarity, find four different sets of values for
{√
5,
√
−7,
√
−35

}
for which

√
5 ·
√
−7 =

√
−35 is not valid.

Now recall from your precalculus course that for the function f (x) =
√
x we assign only the

positive square root to each positive number x. This is often called the principal square root of x.
If we allow only one value for the square root symbol

√
x for each number x, then the square root

product law (1) is not always valid, as we have seen in Tasks 1 and 3 above.
Needless to say, these different interpretations of the square root can become confusing, especially

if we want to view
√
x as a singe-valued function of x. It is important to consider the context when

using these symbols and terms. When we want to consider all roots of a value x, we can say we
want all numerical values of

√
x and we can also use the common term multivalued function for

3



f (x) =
√
x when we want to consider all square roots for each value of x. This idea of a multivalued

function is important and will arise again in a course on complex variables3. An amazing example
came from Euler himself, who showed that the natural logarithm ln (−1) has infinitely many values,
all of which are imaginary numbers! See [Klyve, 2018] for more on the mathematical history and
controversy over logarithms of negative numbers.

Task 6 This task illustrates these new terms.

(a) Find both numerical values of
√
−25 and of

(
− 1
64

)1/2
in terms of

√
−1.

(b) Define the multivalued function f (z) =
√
z for any real number z. Find all values of

f (−36) and f
(
1
49

)
.

3 The Square Root Division Law

Euler argued in Section 149 of his Elements of Algebra that there is a division square root law similar
to the product square root law.

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

It is the same with regard to division; for
√
a divided by

√
b making

√
a/b, it is evident that√

−4 divided by
√
−1 will make

√
+4 or 2; that

√
+3 divided by

√
−3 will give

√
−1; and

that 1 divided by
√
−1 gives

√
+1
−1 , or

√
−1; because 1 is equal to

√
+1.

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

From our work, with the product square root law, it is reasonable to view Euler’s division square
root law with caution. If we use Euler’s multiple root meaning of square roots, there are eight
possible ways to interpret

√
a/
√
b=
√
a/b (why? ).

Task 7 Show that
1

+
√
−1

= −
√
−1 (4)

Task 8 Carry out this task without using the square root division law. You may use the rules in (3)
and (4).

(a) Using+,− signs before√ signs for clarity, find four different sets of values for
{√
3,
√
−3,
√
−1
}

for which
√
3/
√
−3 =

√
−1 is valid.

(b) Using+,− signs before√ signs for clarity, find four different sets of values for
{√
3,
√
−3,
√
−1
}

for which
√
3/
√
−3 =

√
−1 is not valid.

3Strictly speaking, a multivalued function is a type of mathematical relation, not a true function. However, this
mild abuse of terminology is common and useful in the study of complex variables.
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(c) A typical modern student outside this class would likely interpret the statement

√
3√
−3

=

√
−1 as we would interpret +

√
3

+
√
−3

= +
√
−1. According to your answers to parts (a) and

(b), is this a valid statement?

Task 9 Carry out this task without using the square root division law. You may use the rules in (3)
and (4) as well as the square root product law for positive numbers (1).

(a) Using+,− signs before√ signs for clarity, find four different sets of values for
{√
−10,

√
−5,
√
2
}

for which

√
−10√
−5

=
√
2 is valid.

(b) Using+,− signs before√ signs for clarity, find four different sets of values for
{√
−10,

√
−5,
√
2
}

for which

√
−10√
−5

=
√
2 is not valid.

In modern terminology, we use the symbols i and −i to denote the two imaginary square roots
of −1: i2 = −1 and (−i)2 = −1.

Can we create a single-valued square root function for which the division square root law is always
valid? Let’s try! For real x, we will define a single-valued principle square root function

SQ (x) =

{
+
√
x if x ≥ 0

+
√
|x|i if x < 0

. (5)

In this context,
√
4 = SQ (4) = 2 and SQ (−4) = 2i.

Task 10 Using the single-valued principal square root function definition SQ (x) from (5), show that
SQ(3)
SQ(−3) = SQ(−1) leads to the nonsensical statement −1 = 1. What can you conclude from
this?

Task 11 Can you find a single-valued square root function that agrees with the ordinary square root of
a for a ≥ 0 and for which the division square root law is always valid with any real numbers
a, b?

4 Conclusion

We have introduced the idea of a multivalued function in this project to help make sense of square
root laws when imaginary numbers come into play. Square root properties are not the only algebra
rules for complex numbers that need careful consideration. Several mathematicians of the eighteenth
century became embroiled in an argument over how to define logarithms of negative numbers. Euler
eventually put the controversy to rest when he showed in 1747 that the natural logarithm ln (−1)
has infinitely many values, all of which are imaginary: ln (−1) = iπ (1 + 2n) for all integers n, an
amazing fact! This suggests that we will need to define ln z as a multivalued function, and will have
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to be careful when interpreting the logarithm property ln (A/B) = ln (A) − ln (B) when A or B is
negative.

In fact, Euler’s contemporary d’Alembert tried to convince Euler that ln (−1) = 0 before he read
Euler’s proof that ln (−1) = iπ (1 + 2n) [Klyve, 2018]. Here is d’Alembert’s argument4:

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

All diffi culties reduce, it seems to me, to knowing the value of ln (−1). Now why may we
not prove it by the following reasoning? −1 = 1/ − 1, so ln (−1) = ln (1) − ln (−1). Thus
2 ln (−1) = ln (1) = 0. Thus ln (−1) = 0.

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

Task 12 In your own words, explain the flaw in d’Alembert’s argument.

Task 13 Based on Euler’s fact ln (−1) = iπ (1 + 2n), explain how to properly interpret the logarithm

property ln (A/B) = ln (A)− ln (B) when A = 1, B = −1.

For a modern definition of a single-valued function f , which allows for only one value of f (z), we
have defined the function

√
z or principal square root of z when z is real, in (5) above. But this is

not the end of the story! We must decide how to define a single-valued square root function
√
z for

non-real complex numbers such as 3 − 4i. In addition, we want to consider logarithms, cube roots
and other rational exponents for complex numbers. Moreover, in a course on complex variables we
also want to consider derivative and integrals of our complex functions, so we have to investigate
where the single-valued functions are differentiable and integrable. These are all topics for further
study.

Task 14 Since each negative real number n has two square roots, it seems plausible that a negative

number n should have three cube roots c (values for which c3 = n). For example, one cube
root of −8 is clearly −2.

(a) Use algebra to verify that 1+i
√
3 is a cube root of −8, where

√
3 is the positive (principal)

square root of 3.

(b) Use Euler’s ideas on square roots to find a third cube root of −8, and verify your claim.

4For clarity, we have written ln where d’Alembert actually wrote log.
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Notes to Instructors

This mini-PSP is designed to be used in a course on complex variables or history of mathematics.

PSP Content: Topics and Goals

1. Interpret Euler’s square root product and division laws for negative numbers.

2. Introduce the idea of a multi-valued function.

Student Prerequisites

The mini-PSP is written with very few assumptions about student background beyond the basic
sophistication developed in an introductory calculus course. For a complex variables course, the
PSP is designed to be used very early in the course, ideally at the first or second class meeting.

PSP Design, and Task Commentary

This is roughly a one or two period mini-project. The conclusion section tasks are designed to extend
the idea of multivalued functions beyond the square root, and can be omitted.

Suggestions for Classroom Implementation

Advanced reading through the first Euler passage and tackling Task 1 is ideal but not necessary.
LATEX code of this entire PSP is available from the author by request to facilitate preparation of

advanced preparation / reading guides or ‘in-class worksheets’based on tasks included in the project.
The PSP itself can also be modified by instructors as desired to better suit their goals for the course.

Sample Implementation Schedule (based on a 50 minute class period)

Students read through the first Euler passage and try Task 1 before class. Students work through
Task 8 in class. Tasks 5, 9 - 14 can be done in class or given as homework as time permits. Tasks 12
and 13 on the logarithm property may create some confusion and merit follow-up discussion.

Additional Historical Notes

The Martinez article given in the references is quite interesting and valuable. It provides a very
scholarly and rich treatment of the “Euler mistake”issues and controversy.
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