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Otto Hölder’s Formal Christening
of the Quotient Group Concept

Janet Heine Barnett∗

April 20, 2019

In 1854, British mathematician Arthur Cayley (1821–1895) published the paper On the theory
of groups, as depending on the symbolic equation θn = 1 [Cayley, 1854]. Although it is recognized
today as the inaugural paper in abstract group theory, Cayley’s ground-breaking paper went essen-
tially ignored by mathematicians for decades; the mathematical world, it seems, was not quite ready
for the study of such abstract groups. Permutation groups, on the other hand, continued to be ex-
tensively studied. As a natural by-product of their work on certain problems related to permutation
groups, a number of mathematicians also began to make implicit use of a more abstract type of
algebraic structure, referred to today as a ‘quotient group.’ When the German mathematician Otto
Hölder (1859–1937) gave the first explicit definition of a quotient group in 1889, he thus treated
the concept as neither new nor difficult. As a result of this and other related developments in the
study of algebra, abstract group theory in general, and quotient groups in particular, came to play
a central role in a number of mathematical sub-disciplines by the end of the nineteenth century,
as they continue to do today. In this project, we will study the concept of a quotient group as it
was developed by Hölder in his article [Hölder, 1889], entitled “Zurückführung einer beliebigen alge-
braischen Gleichung auf eine Kette von Gleichungen (Reduction of an arbitrary algebraic equation
to a chain of equations).”

Hölder began his mathematical studies at the University of Berlin, but completed his doctorate
on the use of arithmetic means to study analytic functions and summation at the Eberhard-Karls
University of Tübingen in 1882. He then hoped to complete the additional post-doctoral qualifica-
tion (called the Habilitation) that was required to lecture at a German university. He eventually
did so at the University of Göttingen, after being denied the opportunity to habilitate at Leipzig.
He was first required to submit a second doctoral dissertation to Göttingen when that university
declined to accept his Tübingen doctorate; this second dissertation was also in analysis, on the topic
of Fourier series convergence. While at Göttingen, however, Hölder’s interests in group theory were
encouraged through his interactions with various faculty there who were working in algebra; his
initial interest in algebra was probably due to the influence of Leopold Kronecker (1823–1891), with
whom Hölder studied in Berlin. Following a brief period of mental collapse, Hölder returned to the
University of Tübingen as a professor in 1890. He later moved to the University of Leipzig where he

∗Department of Mathematics and Physics, Colorado State University-Pueblo, Pueblo, CO 81001-4901;
janet.barnett@csupueblo.edu.
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held both professorial and administrative positions. It was during his years in Tübingen and Leipzig
that Hölder made numerous contributions to group theory: he was the first to formally study quo-
tient groups as an abstract concept, made important advancements in the search for simple groups,
and introduced the concepts of inner and outer group automorphisms. Although Hölder’s interests
shifted to the geometrical study of the projective line and to certain philosophical questions in his
later years, it is his work in group theory that is best remembered today. Foremost among this work
is the theorem on the uniqueness of the factor groups in a composition series, known today as the
Jordan-Hölder theorem, which Hölder proved in its most general form in the 1889 Mathematische
Annalen paper which forms the basis of this project.

We begin in Section 1 with a look at Hölder’s definition of a group, which we compare briefly
to today’s current definition. In Section 2, we consider his discussion of a certain special type of
subgroup that is related to both the concept of a quotient group and to a type of function known
as a homomorphism, two concepts that in turn have a special connection to each other. Section 3
briefly brings in Hölder’s original motivation for providing a definition of the quotient group concept,
with a brief discussion of an early (and more concrete) version of the theorem known today as the
Jordan-Hölder Theorem. The concept of a quotient group is examined in detail in Sections 4 and
5 of this project. The closing Section 6 begins by looking at the concept of a homomorphism
independently of quotient groups, before bringing quotient groups and homomorphisms together in
Hölder’s statement of the Fundamental Homomorphism Theorem.

1 Hölder’s Definition of a Group
Let’s begin by reading Hölder’s definition of a group from his 1889 paper, and compare it to what
has since become the standard definition for this basic algebraic structure.1

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

I. Group theoretic section2

§ 1. Defining properties of groups

The theorems developed in this section are valid for any group which consists of a finite
number of elements.3 The nature of the elements is immaterial. Only the properties of a
group will be assumed, which can be encapsulated in the following definitions:∗

1To set them apart from the project narrative, all original source excerpts are set in sans serif font and bracketed
by the following symbol at their beginning and end: ∞∞∞∞∞∞∞∞

2The translation of the excerpts from Hölder’s paper that are used in the project is due to George W. Heine III
and David Pengelley, 2017.

3Hölder himself used the word ‘operation’ here. Since his treatment of groups is fully general, and in keeping with
today’s treatment of the subject, we have replaced the work ‘operation’ by the word ‘element’ throughout.

∗Hölder’s footnote: Regarding the definition of group compare also Dyck, Grouptheoretic studies, Math. Ann. vol. XX.
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1) Each pair of elements, composed (multiplied) in a determined sequence, should yield a
uniquely determined element, which likewise belongs to the same aggregate.
2) In each composition of elements, the associative law holds, while the commutative law
need not.
3) From each of the two symbolic equations containing the elements A,B,C,

AB = AC, BA = CA

it can be concluded that
B = C.

A consequence of this determination, in the context of a finite number of elements, is that a
so-called identity element J exists, actually a single one, which leaves all others unchanged
by multiplication, and that for each element A, a unique determined inverse element A−1

exists, so that
AA−1 = A−1 A = J.

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

Task 1 Compare the definition of a group given by Hölder to the definition typically found in today’s
textbooks. How are these definitions the same? How are they different?

Task 2 Notice that Hölder claimed in this excerpt that, for a finite group G, the three conditions that
he stated in the previous excerpt suffice to prove that G contains an identity element J , as
well as inverses for each element of G.

(a) Prove that Hölder’s claim concerning the identity element J is correct.
State clearly where the assumption that G is finite is used.

(b) Now assume that G is a finite set together with a binary operation that satisfies just
Hölder’s conditions 1 and 2. Also assume that G contains an identity element J . Prove
that every element A in G has an inverse element A−1 in G. Again, state clearly where
the assumption that G is finite is used.

(c) Is it possible for either of the theorems from part (a) and part (b) to fail when G is
infinite? Explain why or why not.
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2 A Special Type of Subgroup
In the second section of his paper, Hölder described a special type of subgroup that is needed for
the construction of a quotient group. Today, this type of subgroup is called a ‘normal subgroup.’
We will use Hölder’s term ‘distinguished subgroup’ for this type of subgroup in the excerpts that we
take from his paper, but use the two terms interchangeably elsewhere in this project. Recall first
that a subgroup H of a group G is a non-empty subset of G that is itself a group, which requires
H to be closed under products and inverses. (Notice that Hölder himself stated no definition of
subgroup, but simply assumed that his readers are already familiar with the concept.)

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

§ 2. Distinguished subgroups
If the elements

B,B1, B2, . . .

form a “subgroup” of the entire group, then the elements “transformed with the help of the
element A”,

A−1BA, A−1B1A, A−1B2A, . . . ,

also form a group, which itself will be called transformed from the first subgroup.
A subgroup which is identical with all of its transforms is called, after an expression of Mr.
Klein, distinguished, or after Mr. König (Math. Annalen vol. 21) an invariant subgroup.
In the older parlance, such a subgroup was said to be “commutable with all the elements
of the entire group.” That is, if A denotes an arbitrary element of the whole group, and B

an element of the subgroup, then the products AB and BA are respectively representable
in the forms B′A and AB′′, where B′ and B′′ denote appropriately chosen elements of the
subgroup.
A distinguished subgroup is called a maximal distinguished subgroup if there is no more
extensive distinguished subgroup of the whole group containing it.

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

Letting G be a group, H a subgroup of G and a ∈ G, we can define and denote what Hölder
called a ‘transform of the subgroup H’ as follows:

a−1Ha = {a−1ha |h ∈ H}.

Task 3 Prove that a−1Ha is indeed a subgroup of G.
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Task 4 Consider the specific group4 G = S3, and denote the identity permutation by e.

(a) Let5 H = ⟨(1, 2, 3)⟩ = { e , (1, 2, 3) , (1, 3, 2) }.
Find the transformed subgroup a−1Ha for every element a ∈ S3.
What do you notice about the transformed subgroups in this case?

(b) Now let K = ⟨(2, 3)⟩ = { e , (2, 3)}.
Find the transformed subgroup a−1Ka for every element a ∈ S3.
What do you notice about the transformed subgroups in this case?

You may have noticed that one of the two examples in Task 4 has the special property which
Hölder described as follows:

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

A subgroup which is identical with all of its transforms is called, after an expression of Mr.
Klein, distinguished, or after Mr. König (Math. Annalen vol. 21) an invariant subgroup.
In the older parlance, such a subgroup was said to be “commutable with all the elements
of the entire group.” That is, if A denotes an arbitrary element of the whole group, and B

an element of the subgroup, then the products AB and BA are respectively representable
in the forms B′A and AB′′, where B′ and B′′ denote appropriately chosen elements of the
subgroup.

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

In Definition 1, Hölder’s definition of a ‘distinguished subgroup’ is stated using the notation
introduced in Task 3 above. As noted earlier, we will also refer to such subgroups using the current
terminology of a ‘normal subgroup.’

Definition 1
Let G be a group and H a subgroup of G.
H is a normal (or distinguished) subgroup of G if and only if (∀a ∈ G)(a−1Ha = H).
When H is a normal subgroup of G, we write H ▹ G.

Notice Hölder’s remark that the set equality ‘a−1Ha = H’ does NOT mean that an individual
element a−1ha from a−1Ha will be equal to the element h. In other words, we can NOT assume
that a−1ha = h when a ∈ G and h ∈ H for a normal subgroup H. Of course, if G is abelian,
then a−1ha = h for all a ∈ G and h ∈ H — but not all groups are abelian! Indeed, you will

4Recall that for n ∈ Z+, the notation Sn denotes the symmetric group on n variables.
5Given any group G and an element a ∈ G, we denote the subgroup generated by a as ⟨a⟩ = {an |n ∈ Z}.
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have found in Task 4(a) above that (1, 2)−1H(1, 2) = H, even though it is quite clear, for instance,
that (1, 2)−1(1, 2, 3)(1, 2) ̸= (1, 2, 3). Instead, we see that (1, 2)−1(1, 2, 3)(1, 2) = (1, 3, 2) — which
is fine, since (1, 3, 2) ∈ H. Or, using the fact that (1, 2)−1 = (1, 2) to rewrite this last equality
as (1, 2)(1, 2, 3) = (1, 3, 2)(1, 2) and setting a = (1, 2), h = (1, 2, 3) and h′ = (1, 3, 2), we see that
ah = h′a where both h and h′ are elements of H. Adapting Hölder’s comments in the previous
excerpt to the lower case letters that we have introduced here, the set equality a−1Ha = H thus
only implies that:

“the products ah and ha are respectively representable in the forms h′a and ah′′, where h′

and h′′ denote appropriately chosen elements of the subgroup.”

According to Hölder, this idea was described in ‘the older parlance’ by the expression ‘the subgroup
is commutable with all the elements of the entire group.’ This gives us the following alternative
definition for a normal subgroup which is often used today:

Definition 1′

Let G be a group and H a subgroup of G.
H is a normal (or distinguished) subgroup of G if and only if (∀a ∈ G)(aH = Ha),
where aH = {ah |h ∈ H} and Ha = {ha |h ∈ H} respectively.

Recalling that the sets aH and Ha are called cosets of H, this definition says that H is normal if
and only if the left and right cosets corresponding to each element are equal. We will meet cosets
again when we pick up our reading of Hölder in the next section. The tasks in the rest of this
section first provide some practice with using Definition 1′ and two other methods that can be used
to prove a particular subgroup is normal.

Task 5 Let G be a group, and recall that the center of G is the subgroup defined by

C = {x ∈ G | (∀y ∈ G)(yx = xy) }.

Use Definition 1′ to prove that C is a normal subgroup in G.
(You can assume C is a subgroup of G, and just prove the normality of C in G.)

Task 6 This task introduces another property that could be used to define a normal subgroup.
Let G be a group and H a subgroup of G.
We say that H is closed under conjugates if and only if (∀a ∈ G)(∀h ∈ H)(a−1ha ∈ H).
Prove that H ▹ G if and only if H is closed under conjugates.
(An element of the form a−1ha is called a conjugate of h.)

Task 7 Given a group G, a commutator of G is any element of the form xyx−1y−1, where x, y ∈ G.
Suppose H is a subgroup of G such that H contains all the commutators of G.
Show that H is a normal subgroup of G by proving that H is closed under conjugates.
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Task 8 In this task, we look at an excerpt from a paper by Eugen Netto6 (1846–1919) that provides
us another way to prove that a subgroup is normal. We begin by reading Netto’s statement
and proof of the theorem in question [Netto, 1882, p.81].

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

§71 If a group G of order 2r contains a subgroup H of order r,
then H is a normal7 subgroup of G.
For if the elements8 of H are denoted by 1, s2, s3, . . . , sr, and if t is any

element of G which is not contained in H, then t, ts2, ts3, . . . , tsr are the
remaining r elements of G. But in the same way, t, s2t, s3t, . . . , srt are also
these remaining elements. Consequently every element sαt is equal to some
tsβ, that is, we have in every case t−1sβt = sα and therefore G−1HG = H.

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

(a) Explain why Netto could assert that t, ts2, ts3, . . . , tsr are ‘the remaining r elements of G’
in his proof. Begin by clearly stating the assumptions that led him to this assertion.

(b) In the final sentence of his proof, Netto concluded that G−1HG = H. State a formal
definition for this equality, based on Netto’s argument leading up to this conclusion:

Definition 2

Let G be a group and H a subgroup of G.
Then G−1HG = H if and only if .

Why do you think that Netto himself used the phrase ‘self-conjugate subgroup’ to refer
to subgroups that satisfy this equality? (See footnote 6.)

(c) Explain why the equation G−1HG = H holds if and only if H is normal in G.
(d) Use Netto’s Theorem to explain why9 An ▹ Sn for all n ∈ Z+.

6The German mathematician Eugen Netto studied mathematics from 1866–1870 at the University of Berlin, where
he attended lectures by Leopold Kronecker (1823–1891), Karl Weierstrass (1815–1897) and Ernst Eduard Kummer
(1810–1893), among others. His doctoral dissertation, completed under the direction of Weierstrass and Kummer,
was officially awarded in 1871. Netto then taught at a gymnasium (or secondary school) in Berlin before securing a
professorship at the University of Strasbourg in 1879. He left Strasbourg in 1888 for an appointment at the University
of Giessen, where he remained until the debilitating effects of Parkinson’s disease forced his retirement. Although
Netto worked in other areas of mathematics during his early career, he is best remembered for his contributions
to group theory. His book [Netto, 1882], from which the excerpt in Task 8 is taken, was especially important for
the ways in which it combined results from permutation groups with results about groups that had been developed
within number theory, independently of the study of permutation groups.

7Netto himself used the expression ‘self-conjugate’ in place of the adjective ‘normal’ here; the former was another
standard way of describing normality in the nineteenth century work on permutation groups.

8Netto used the term ‘substitution’ here, as was common within the context of permutation groups at the time.
Since his proof is fully generalizable to any arbitrary group, we have replaced the word ‘substitution’ by the word
‘element’ in keeping with the more general context of this project.

9Recall that for n ∈ Z+, the notation An denotes the alternating subgroup which consists of all even permutations
in the symmetric group Sn.
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3 From ‘Factors of Composition’ to ‘Quotient Groups’
Recall the following definition stated by Hölder at the very end of the excerpt in Section 2:

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞
A distinguished subgroup is called a maximal distinguished subgroup if there is no more
extensive distinguished subgroup of the whole group containing it.

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

Task 9 (a) Use set notation to complete the following re-statement of this definition:
Let G be a group with H ▹ G.
H is a maximal normal subgroup of G provided the following condition holds:

If K ▹ G with H ⊆ K ⊂ G, then .
(b) Let10 G = Z12 and H = ⟨2⟩. Since G is abelian, we know that H is normal in G.

(In fact, every subgroup of G is normal in G — make sure you see why this is true!)
Show that H is a maximal normal subgroup of G.

(c) Again let G = Z12.
Find a second maximal normal subgroup K of G, different from the one in part (b).
Explain how you know that your example K is maximal.

Hölder began Section 3 of his paper by stating the following intriguing property related to series
(or chains) of maximal normal subgroups.

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞
§ 3. The factors of composition

Of special importance is a series introduced by Mr. C. Jordan. Namely, if G is any group,
then a series of groups

G,G′, G′′, ...J

is built, such that each group of this sequence is a maximal distinguished subgroup of the
previous one, and the last group, denoted J , contains only the identity element. Such a
series is called a series of composition. Now if the groups of the series contain

n, n′, n′′, . . . 1

elements respectively, then n

n′ ,
n′

n′′ , · · ·

are the numbers which Mr. C. Jordan introduced into the theory as factors of composition.
These factors are completely determined, except for their succession, despite the possibility
of altering the series of composition.†

But this theory of the factors of composition must then be deepened, so that the factors are
interpreted as groups.

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

10Given n ∈ Z+, the notation Zn denotes the set of integers mod n, which forms a group under addition mod n.
†Hölder’s footnote: Cf. Jordan, Traité des substitutions, etc., p. 42.
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The fact that the factors of composition are invariant in the way described above was well-known
in Hölder’s time. Its existence (and usefulness) was discovered in connection with the problem of
determining whether a given polynomial is algebraically solvable.11 We omit these details, in part
because they go beyond the scope of this project — but also because the alternative approach of
looking instead at quotient groups suggested at the end of this excerpt is indeed a much deeper
theory. Before we turn to this theory, let’s pause for a quick illustration of the invariance of the
factors of composition.

Task 10 Let G = Z12. Recall again that every subgroup of G is normal, since G is abelian.

(a) We know (from Task 9) that ⟨2⟩ is a maximal normal subgroup of G. By a similar
proof, each of the subgroups in the following series is a maximal normal subgroup of its
predecessor. (Make sure you believe this!)

Z12 ◃ ⟨2⟩ ◃ ⟨4⟩ ◃ ⟨0⟩

Explain why the factors of composition for this series are 2, 2, 3.
(b) Now consider the following series of maximal normal subgroups in G:

Z12 ◃ ⟨3⟩ ◃ ⟨6⟩ ◃ ⟨0⟩

Determine the factors of composition for this chain, and compare them to those for the
series in part (a). Explain how this relates to the property that Hölder described in the
preceding excerpt.

4 Quotient Groups and Normal Subgroups

Hölder preceded his definition of the quotient group itself with the following description of what he
intended to do, and a reminder to his readers about some useful background ideas.

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

It will be shown in the next sections that through the relationship of a group to a distinguished
subgroup contained in it, a new group of generally different elements is always defined. This
latter group is fully determined from an abstract standpoint, in which the substance of
the elements is disregarded, and only their mutual combination considered, and for which
therefore also groups obtainable uniquely from one another (isomorphic12) are interpreted
as identical. Here’s an example.‡

11A polynomial is said to be algebraically solvable provided its roots can be obtained from its coefficients using
only elementary arithmetic operations (+,−,×,÷) and extraction of roots. The quadratic formula, for instance,
proves that every second degree polynomial is algebraically solvable. Although Niels Abel (1802–1829) and Évariste
Galois (1811–1832) proved that the general polynomial of degree 5 or higher is not algebraically solvable, specific
polynomials of these higher degrees may be algebraically solvable. This is the case, for instance, with the equations
xn − 1 = 0, which give us the nth roots of unity.

12Hölder himself used the phrase holohedrally isomorphic here, while other algebraists of his time used the phrase
simply isomorphic, to describe this notion of two “different groups” being the same from an abstract point of view. In
this project, we use the current term isomorphic, which is formally defined today in terms of an operation-preserving
bijection between the two groups. We will examine this definition more formally in Section 6.

‡Hö’s footnote: Cf. the work of Herr Dyck in Math. Ann. vol. XX.
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§ 4. The quotient defined by a group and one of its distinguished subgroups

If the symbols
B,B1, B2, . . .

denote the elements of any subgroup H, then all the elements of the entire group G can be
represented in the scheme

B, B1, B2, . . .

S1B, S1B1, S1B2, . . .

S2B, S2B1, S2B2, . . .

. . . . . . . . . . . .

Sn−1B, Sn−1B1, Sn−1B2, . . .

where the elements
S1, S2, ..., Sn−1

are appropriately chosen from the entire aggregate. This scheme is found already in Cauchy.
Here’s an example.§ The same serves also for the proof that the number m of elements B,
that is, the order of the subgroup, is always a divisor of the total number of elements, that
is, of the order of the whole group.

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

Task 11 In the preceding excerpt, Hölder noted the requirement that ‘the elements S1, S2, ..., Sn−1 are
appropriately chosen from the entire aggregate’ in the construction of the scheme (or array)
found in Cauchy.13.
Describe how these elements must be chosen so as to ensure that every element of the group
G appears in this array exactly once.

Task 12 Hölder commented that this array also serves to prove a certain result relating the order of a
finite group to the order of a subgroup. What is this theorem called today? Give a complete
modern statement of it.

With these preliminaries in place, Hölder was ready to give the following definition of the
quotient group. (Recall that B,B1, B2, . . . denote the elements of the subgroup H, while Sν , Sµ, Sx

denote elements of the group G in this continuation of the preceding excerpt.)

§Hölder’s footnote: Cauchy: Exercices d’analyse et de physique mathématique, vol. III, p. 184.
13See Appendix I of this project for an excerpt from the paper in which Cauchy first constructed this array in his

proof of an early version of the theorem which is now known as Lagrange’s Theorem in finite group theory, and some
related exercises.
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∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

Now if the subgroup is distinguished (normal), then the theorem holds, that two arbitrary
elements from two specific horizontal rows of the given schema, composed in a certain
succession, must give an element of a completely determined horizontal row. Indeed, if
µ, ν, ρ, σ signify four arbitrary indices, then it is always the case that14

SνBρSµBσ = SνSµBρ′Bσ

= SxBτ

where the index x depends only on µ and ν.
Thereby a composition of horizontal rows is defined. Thus one obtains new elements, which
likewise form a group. This completely determined group is that which should be introduced
for consideration. One could call it the quotient of the groups G and H, and in what follows
it shall be denoted

G/H.

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

Task 13 (a) In his definition of the quotient group in the final paragraph of this excerpt, what types
of objects does Hölder say are being multiplied (or ‘composed’) to obtain another object
of the same kind? How many such objects are there? That is, what is |G/H|?

(b) According to Hölder, H must be normal in order for the following computation to go
through:

SνBρSµBσ = SνSµBρ′Bσ

= SxBτ .

(i) Where exactly is the assumption of normality being used?
(Recall again that B,B1, B2, . . . denote the elements of the subgroup H,
while Sν , Sµ, Sx denote elements of the group G.)

(ii) Why was it important for Hölder to select arbitrary indices µ, ν, ρ, σ for this
computation?

(iii) What did Hölder mean by the phrase ‘the index x depends only on µ and ν’?

14A typographical error in this next equation in Hölder’s original article has been corrected throughout this project.
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How interesting! Hölder has just described how we can take two horizontal rows in an array,
and multiply them to obtain another ‘completely determined’ horizontal row of this same array! In
other words, the elements of the quotient group G/H are actually subsets of the group G. Notice
that these subsets (or horizontal rows) are the cosets S1H, S2H, ……of the normal subgroup H for
certain appropriately chosen elements S1, S2, ..., Sn−1 of G. This is easy to see from the array itself,
which we re-write here using the current convention of representing elements of G by lower case
letters:

H = {b, b1, b2, . . . }
s1H = {s1b, s1b1, s1b2, . . . }
s2H = {s2b, s2b1, s2b2, . . . }

... ... ... ...
skH = {skb, skb1, skb2, . . . }

... ... ... ...

Further simplifying the notation by dropping the subscripts, we can thus define the set G/H

more simply as:
G/H = {sH | s ∈ G}.

It is important to remark here that it’s quite possible for two different elements of G (s ̸= s′) to
have equal cosets (sH = s′H); indeed, this occurs with any subgroup H that contains more than
one element. Naturally, we list each distinct coset only once in the set G/H, an idea to which
Hölder alluded with his comment about using ‘appropriately chosen elements’ to generate the array.
We will explore this essential feature of cosets via specific examples in Tasks 15–17 below, and again
in Section 5 of this project. Notice also that this set-theoretic definition of G/H does not actually
require G or H to be finite, and we will consider quotient groups of infinite groups G in a later task
as well.15 But first, let’s go back to see what Hölder said about how to multiply cosets in order to
get a group from G/H in the case where H is a normal subgroup.

The key to defining the product of two cosets lies in the computation given in the previous
excerpt:

sνbρsµbσ = sν(bρsµ)bσ where bρsµ ∈ Hsµ
= sν(sµbρ′)bσ Hsµ = sµH, by normality of H
= (sνsµ)(bρ′bσ) where sνsµ ∈ G and bρ′bσ ∈ H

= sxbτ .

Notice in particular that Hölder has used sx to denote the product sνsµ, which we know to be an
element of G by the closure property of groups. Multiplying ‘the horizontal row corresponding to sν ’
by ‘the horizontal row corresponding to sµ’ thus produces ‘the horizontal row corresponding to sνsµ.’ In
short, the product of two cosets can be defined quite naturally as simply ‘the coset of the product,’
which we can write symbolically as follows:

For all sH, uH ∈ G/H, (sH)(uH) = (su)H.

15Hölder himself did not look at quotient groups of infinite sets, since the problems that he was attempting to
solve required finite groups only.
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Before going back to Hölder’s discussion of the quotient group, let’s take a look at some features
of the quotient group G/H under this definition of coset multiplication, and consider a few examples.

Task 14 Let G be a group and H a normal subgroup of G. Denote the identity element of G by e.
(a) Show that coset multiplication on G/H is associative. Begin by assuming s, u, y ∈ G.

Then compute the products [(sH)(uH)](yH) and (sH)[(uH)(yH)].
(b) Show that H is the identity element of G/H. Hint: eH = H.
(c) Given sH ∈ G/H, how should we define the inverse element (sH)−1?

Justify your answer.

Task 15 Let G = S3 and H = A3. Recall (from Section 2) that A3 ▹ S3, which allows us to safely
proceed with coset multiplication on G/H.
To simplify notation, let α = (1, 3, 2) ; β = (1, 2, 3) ; γ = (2, 3) ; δ = (1, 3) ; ϵ = (1, 2).
This gives us: G = {1 , α , β , γ , ϵ , δ } and H = {1 , α , β }.

(a) Explain why there are only two distinct (left) cosets in G/H:

H = {1 , α , β } and γH = {γ , ϵ , δ }.

(b) Complete the following Cayley table16 for G/H = {H , γH }.

H γH

H

γH

(c) What familiar group does G/H resemble, and in what ways?
[Or, for those who have already studied the concept of a group isomorphism:
To what familiar group is G/H isomorphic? Explain how you know.]

Task 16 Let G = Z10 and H = {0, 5}. Recall that G is a group under addition modulo 10.
Since G is abelian, H ▹ G, which allows us to define coset addition on G/H as follows:

(s+H) + (t+H) = (s+ t) +H (where s, t ∈ G)

.

(a) Complete the following list of the five distinct cosets of G/H:

H = { 0 , 5 } another name for this coset: 5 +H

1 +H = { 1 , 6 } another name for this coset:
2 +H = another name for this coset:
3 +H = another name for this coset:
4 +H = another name for this coset:

16The Cayley table for S3 that is included in Appendix II of this project can be used to complete these computations.
This is the second table in the Cayley excerpt on page 36. See also Task II.2.
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Task 16 - continued
(b) Complete the following Cayley table for G/H:

H 1 +H 2 +H 3 +H 4 +H

H H 1 +H 2 +H 3 +H 4 +H

1 +H 1 +H

2 +H 2 +H

3 +H 3 +H

4 +H 4 +H

(c) What familiar group does G/H resemble, and in what ways?
[Or, for those who have already studied the concept of a group isomorphism:
To what familiar group is G/H isomorphic? Explain how you know.]

Task 17 Let G = Z and H = 4Z = {4k | k ∈ Z }.
Since G is abelian, H ▹ G, which allows us to define coset addition on G/H.

(a) Show that there are four distinct cosets in G/H by completing the following list.
(You do not need to list all the names of each coset!).

H = { . . . ,−12 , −8 , −4 , 0 , 4 , 8 , 12 , . . . }
1 +H = { . . . ,−11 , −7 , −3 , 1 , 5 , 9 , 13 , . . . }
2 +H =

3 +H =

(b) Complete the following Cayley table for G/H:

H 1 +H 2 +H 3 +H

H H 1 +H 2 +H 3 +H

1 +H 1 +H

2 +H 2 +H

3 +H 3 +H

(c) What familiar group does G/H resemble, and in what ways?
[Or, for those who have already studied the concept of a group isomorphism:
To what familiar group is G/H isomorphic? Explain how you know.]

As we can see from the example in Task 17, it is possible for an infinite group G to have just
finitely many cosets for a given subgroup H. In this case, the quotient group itself is also finite.
Today, the number of distinct cosets defined by H is called the index of H in G, and denoted17

(G : H). Notice that, by Lagrange’s Theorem, we can also write (G : H) = |G|
|H| whenever G is a

finite group. (Why can’t we write this when G is an infinite group?)

17Some textbooks use square brackets instead of parentheses: [G : H].
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Of course, whether G is finite or not, each of the distinct cosets in G/H will have multiple names
— a fact that raises a certain quandary about the definition of coset multiplication. Namely, since
we are using the names of cosets to define the product, how do we know that the product we obtain
does not depend on the particular names that we used to compute it? Or, to phrase the question
more formally, how do we know that coset multiplication is well-defined? In the next section of
the project, we return to our reading of Hölder to see what he has to say about this question. We
first bring this section to closure with a task that revisits the method of proving that a subgroup is
normal from Task 8, now using the language of cosets and index.

Task 18 Recall from Task 8 that Netto gave a proof of the following theorem in 1882:

If a group G of order 2r contains a subgroup H of order r, then H is a normal subgroup of G.

(a) Restate this theorem using the language of index.
Theorem Let G be a group with H a subgroup of G.
If , then H is normal in G.

(b) Recall that Netto’s proof of this theorem examined elements of the set G−1HG. Write
an alternative proof that does not examine specific elements, but instead uses only the
language of cosets. That is, show that aH = Ha for all a ∈ H, beginning from the
hypothesis you gave to complete the theorem statement in part (a).

5 The Importance of Being Normal
We continue now with our reading of Hölder’s paper.

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞
§ 5.

The explanations of the previous paragraphs can also be expressed as follows: One could call
two elements from the entire group G equivalent, if they can be conveyed into each other
through multiplication by an element of the distinguished (normal) subgroup H. Due to the
interchangeability of the group H with the elements of the entire group, one need not distin-
guish in this definition between right and left multiplication. For the same reason, it follows
that multiplying equivalents by equivalents yields equivalents. Thus if one partitions the el-
ements of the entire group into classes, such that equivalent elements sit in the same class,
and inequivalent elements in different classes, then one obtains a composition of the classes,
for which the group property holds. Each m elements of the original group G correspond
to a specific element of the new group. The composition of elements corresponds between
the two groups, that is, there exists between the latter a [surjective] homomorphism.18 This
isomorphism is called merohedral19, because several elements of the first group correspond
to one element of the second.

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

18Hölder used the word isomorphism here, in keeping with the usage at that time of calling any surjective operation-
preserving function by that term. However, the prefix ‘iso’ has since become associated with only one-to-one functions.
To avoid confusion, we have thus employed the current terminology throughout this project.

19The word merohedral can be read to mean “many-to-one.” See the previous footnote for more detail.
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Task 19 How do the ideas that Hölder described in this excerpt relate to the various specific examples
that you examined in the tasks from the previous section? Respond to this question in general
first. Then choose one specific example from the previous section, and use it to explain what
he meant by each of the following statements in particular.

– One could call two elements from the entire group G equivalent, if they can be conveyed into
each other through multiplication by an element of the normal subgroup H.

– …, it follows that multiplying equivalents by equivalents yields equivalents.
– Thus if one partitions the elements of the entire group into classes, such that equivalent

elements sit in the same class, and inequivalent elements in different classes, then one obtains
a composition of the classes, for which the group property holds.

– Each m elements of the original group G correspond to a specific element of the new group.

We will come back to Hölder’s intriguing comments at the end of this excerpt about homo-
morphisms, and the correspondence which exists between ‘each m elements of the original group G’
and ‘a specific element of the new group’ in the concluding section of this project. Let’s first take a
look at what he said about ‘equivalence’ in the first part of this excerpt. There are two basic (but
related) ideas here. The first of these is Hölder’s assertion that it is possible to define an equivalence
relationship20 on G by setting s ≡ t mod H if and only if (∃h ∈ H)(s = th). Recasting this in
the language of cosets, this definition becomes s ≡ t mod H if and only if s ∈ tH. Hölder further
noted that, since H is normal in G, its right and left cosets are equal; accordingly, we could also
define s ≡ t mod H if and only if s ∈ Ht. Of more importance than which of these interchangeable
definitions is used for this equivalence relationship, however, is Hölder’s remark that

…it follows that multiplying equivalents by equivalents yields equivalents. Thus if one parti-
tions the elements of the entire group into classes, such that equivalent elements sit in the
same class, and inequivalent elements in different classes, then one obtains a composition
of the classes, for which the group property holds.

In other words, if H is a normal subgroup of G, the coset name that we use for each factor doesn’t
affect the product itself, so that coset multiplication is well-defined in the following sense:

Given s, t, u, v ∈ G, if sH = tH and uH = vH, then (su)H = (tv)H.

The example in the next task illustrates what goes wrong if we try coset multiplication with a
non-normal subgroup. The subsequent task then outlines a proof, using an approach in keeping
with Hölder’s remarks from earlier in his paper, that coset multiplication is well-defined for normal
subgroups. An alternative approach to proving this important fact is included in Appendix III.

20Recall that a relationship ≡ defines an equivalence relationship on a set S provided it satisfies certain properties
that mimic the relationship of equality (=). Appendix III examines these properties for the particular equivalence
relationship referenced by Hölder in this excerpt through the writings of yet another nineteenth century algebraist,
Camille Jordan (1838–1922). Hölder himself simply took this relationship as well-known, due to the work which
Jordan and others had done before him within the context of permutation groups.
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Task 20 Let G = S3 = {1 , α , β , γ , ϵ , δ }, and again employ the notation introduced in Task 15:

α = (1, 3, 2) , β = (1, 2, 3) , γ = (2, 3) , δ = (1, 3) , ϵ = (1, 2).

Consider the subgroup K = ⟨γ⟩ = { 1 , γ }.

(a) Complete the following lists of the three distinct left cosets of K, and the three distinct
right cosets of K. Give all names for each coset.21

• K = 1K = { 1 , γ } = γK • K = K1 = { 1 , γ } = Kγ

• αK = {α , αγ } = {α , δ } = δK • Kα = {α , γα } = {α , ϵ } =

• βK = • Kβ =

(b) Use the results from part (a) to explain why K is not a normal subgroup of G.
(c) Compute the following ‘coset products.’

• αKβK = • δKϵK =

(d) Use the results from part (c) to explain why coset multiplication is not well-defined for
the non-normal subgroup K.

Task 21 Provide the requested reasons in the first part of the following proof that coset multiplication
is well-defined when H is normal in G. Then complete the second part of the proof.

PROOF
Assume H ▹ G, s, t, u, v ∈ G, sH = tH and uH = vH. We wish to show that
(su)H = (tv)H. We begin by showing that (su)H ⊆ (tv)H. To this end, let
x ∈ (su)H. Then there exists h ∈ H such that x = (su)h. Using the fact that H

is normal, we note that vH = Hv. It follows that:
x = (su)h

= s(uh) by associativity
= s(vh1) for some h1 ∈ H, since
= s(h2v) for some h2 ∈ H, since
= (sh2)v

= (th3)v for some h3 ∈ H, since
= t(h3v)

= t(vh4)

= (tv)h4

Since h4 ∈ H and x = (tv)h4, we conclude that x ∈ (tv)H. Thus, (su)H ⊆ (tv)H.

We next show that (tv)H ⊆ (su)H. *** Do this!***

Having thus shown that both subset relationships hold, we now conclude that
(st)H = (uv)H.

21The Cayley table for S3 that is included in Appendix II of this project can be used to complete these computations.
This is the second table in the Cayley excerpt on page 36. See also Task II.2.
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Noting that a normal subgroup ensures that coset multiplication is well-defined — or as Hölder
expressed it, that multiplying equivalents by equivalents yields equivalents — was the key observation
needed for him to conclude that:

Thus if one partitions the elements of the entire group into classes, such that equivalent
elements sit in the same class, and inequivalent elements in different classes, then one
obtains a composition of the classes, for which the group property holds.

We highlight this important conclusion in the following formal definition of the quotient group,
which we state here for emphasis to summarize the key concepts from this and the preceding
section:

Definition 3
Let G be a group and H ▹ G, so that coset multiplication on G/H is well-defined.
The quotient group of G modulo H is the set G/H = {sH | s ∈ G} under coset
multiplication, with H as the identity element and (sH)−1 = s−1H for all s ∈ G.
Furthermore, the index of H in G, denoted (G : H), is defined by (G : H) = |G/H|.

This formal sounding definition unfortunately loses some of the direct appeal of Hölder’s own
declaration that ‘the group property holds.’ In other words: G/H is itself a GROUP! And as a
group, every theorem known to hold for arbitrary groups applies to G/H, provided we adapt the
assumptions of the theorem in question to the quotient group operation of coset multiplication. The
closing tasks of this section will provide you with some practice with this type of translation, as
well as a glimpse at how the properties of the three distinct groups G/H, G and H can be related.

Task 22 Let G be a group (not necessarily finite) and H ▹G with (G : H) = m, where m ∈ Z+.
Use theorems about the order of group elements to prove each of the following.
(a) For all a ∈ G, ordG/H(aH) is a divisor of m.
(b) For all a ∈ G, am ∈ H.

Task 23 Let G be a group and H ▹G.
Use the definition of finite order for group elements to prove the following.
(a) If every element of G/H has finite order, and every element of H has finite order, then

every element of G has finite order.
(b) If every element of G/H has finite order, then for every a ∈ G, there exists n ∈ Z such

that an ∈ H, and conversely.

Task 24 Let G be a group and H ▹G. Prove each of the following.

(a) If a2 ∈ H for every a ∈ G, then every element of G/H is its own inverse,
and conversely.

(b) If there is a ∈ G such that for all b ∈ G, there exists n ∈ Z with ban ∈ H,
then G/H is cyclic, and conversely.
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Task 25 Let G be a group, and recall that the center of G is the normal subgroup defined by

C = {x ∈ G | (∀y ∈ G)(yx = xy) }.

(a) Prove: If G/C is cyclic, then G is abelian.
Hint: Begin with a generator aC for the quotient group G/C, where a ∈ G; then use the
definition of generator to show that every x ∈ G can be written in the form x = can for
some c ∈ C and some n ∈ Z.

(b) Give a counterexample to show that the converse of part (a) is not true.

6 The Fundamental Homomorphism Theorem
As promised earlier, we now return to the very intriguing comments that Hölder stated at the end
of the excerpt in the previous section. Recall first that Hölder had earlier assumed H is a normal
subgroup of the group G, with |H| = m.

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

Each m [equivalent] elements of the original group G correspond to a specific element of
the new group [G/H]. The composition of elements corresponds between the two groups,
that is, there exists between the latter a [surjective] homomorphism. This isomorphism is
called merohedral22, because several elements of the first group correspond to one element
of the second.

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

The first sentence of this excerpt states simply that, given |H| = m, there is an ‘m-to-1’ function
between the original group G and the quotient group G/H. In fact, this is straightforward to see by
considering the natural correspondence f : G → G/H defined by f(t) = tH for each t ∈ G. (Pause
here to make sure you see how f maps m distinct elements in G to the same coset in G/H!)

It is Hölder’s second statement that may seem surprising to you; namely, that ‘the composition
of elements corresponds between the two groups’. Today, we describe this notion by saying that f

preserves the (group) operation: given any s, t ∈ G, f(st) = f(s)f(t). A function that preserves
operations — between any two groups — is also now called a homomorphism. Before we examine
Hölder’s claim that the specific function f between G and G/H defined above is a [surjective]
homomorphism, let’s take a look at some properties of homomorphisms more generally.

We start with the following formal statement of the terminology involved.

22Recall that the word merohedral can be read to mean “many-to-one.”
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Definition 4
Let (G, ∗) and (G′, ⋆) be groups with identities 1 and 1′ respectively.

• A function f : G→G′ is a homomorphism from G to G′ if and only if

(∀s, t ∈ G)(f(s ∗ t) = f(s) ⋆ f(t)).

• Given a homomorphism f : G→G′, the kernel and range of f are the sets

Ker(f) = {s ∈ G|f(s) = 1′} and Ran(f) = {y ∈ G′|(∃t ∈ G)(f(t) = y) }.

• G′ is a homomorphic image of G if and only if there exists a homomorphism
f : G→G′ for which Ran(f) = G′, or equivalently, if and only if there exists a
surjective23 homomorphism f : G → G′.

• G is isomorphic toG′ if and only if there exists a bijective24 homomorphism f : G → G′.

In the following tasks, we examine some properties and examples of homomorphisms. If you
have already studied isomorphic groups, then some of these properties will sound familiar, but with
a twist! That twist arises, of course, from the fact that a homomorphism need not be either one-to-
one or onto, whereas an isomorphism must be both. For this reason, we will carefully track where
and when we use either assumption (one-to-one or onto) in the following tasks.

Task 26 Assume that (G, ∗) and (G′, ⋆) are groups with identities 1, 1′ respectively.
Let f : G → G′ be a group homomorphism.

(a) Prove that H = Ran(f) is a subgroup of G′. Under what condition will H = G′?
(b) Prove that K = Ker(f) is a normal subgroup of G.

Conclude that G/K is therefore a quotient group.

Task 27 Assume that (G, ∗) and (G′, ⋆) are groups with identities 1, 1′ respectively.
Define f : G → G′ by f(x) = 1′ for all x ∈ G. (f is called the trivial homomorphism.)
Prove that f is a homomorphism with Ker(f) = G.
Under what conditions will f be one-to-one? onto?

Task 28 Let n ∈ Z+ with n ≥ 2. Define f : Sn → Z2 by f(σ) =

{
0 if σ ∈ An

1 if σ ̸∈ An
.

(a) Verify that f is a homomorphism by determining the value of f(στ) and f(σ)f(τ) for
the various cases of parity of σ and τ . (There are three cases in all: both even, both
odd, one even/one odd). Explain how this shows that Z2 is a homomorphic image of Sn.

(b) Also explain why Ker(f) = An. Since An▹Sn (give two reasons why we know this!), the
quotient group Sn/An is defined. To what familiar group is Sn/An isomorphic? Justify
your response.

23Recall that a surjective function is onto: (∀y ∈ G′)(∃s ∈ G)(f(s) = y).
24Recall that a bijective function is both surjective and injective.
Further recall that an injective function is one-to-one: (∀s, t ∈ G)(f(s) = f(t) ⇒ s = t).
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Task 29 Assume that (G, ∗) and (G′, ⋆) are groups with identities 1, 1′, respectively.
Let f : G → G′ be a group homomorphism.

(a) Prove that f(1) = 1′ by showing that f(1) ⋆ y = y ⋆ f(1) = y for all y ∈ G′.
This shows that identities are preserved by all group homomorphisms.

(b) Given x ∈ G, prove that [f(x)]−1 = f(x−1) by showing that f(x−1) ⋆ f(x) = 1′.
This shows that inverses are preserved by all group homomorphisms.

(c) Assume x ∈ G has finite order r.
Prove ordG′ [f(x)] divides ordG(x) by showing [f(x)]r = 1′.
Then give an example to show ordG′ [f(x)] < ordG(x) is possible when f is not onto.

Optional:
Complete the proof that ordG′ [f(x)] = ordG(x) for every x ∈ G in the case
where G′ is a homomorphic image of G. Indicate clearly where the additional
assumption that f is onto is used.

(d) Prove: If G is abelian, then Ran(f) is also abelian.
Use this to conclude that the homomorphic image of an abelian group is also abelian.
Then give an example to show G′ can be non-abelian, even if G is abelian.

Optional:
Complete the proof that G is abelian if and only if G′ is abelian in the case
where f is an isomorphism. Indicate clearly where the additional assumptions
that f is both one-to-one and onto are used.

(e) Prove: If G is cyclic, then Ran(f) is also cyclic.
Use this to conclude that the homomorphic image of a cyclic group is also cyclic.
Then give an example to show G′ can be non-cyclic, even if G is cyclic.

Optional:
Complete the proof that G is cyclic if and only if G′ is cyclic in the case where
f is an isomorphism. Is it necessary for f to be both one-to-one and onto in
your proof? Explain why or why not.
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Task 30 Consider the function f : Z8 → Z4 defined by f =

(
0 1 2 3 4 5 6 7

0 1 2 3 0 1 2 3

)
.

(a) Verify that f is a homomorphism by checking that f transforms the Cayley table of Z8

to the Cayley table of Z4,

Table for Z8 Transformed Table for f [Z8]

0 1 2 3 4 5 6 7

0 0 1 2 3 4 5 6 7

1 1 2 3 4 5 6 7 0

2 2 3 4 5 6 7 0 1

3 3 4 5 6 7 0 1 2

4 4 5 6 7 0 1 2 3

5 5 6 7 0 1 2 3 4

6 6 7 0 1 2 3 4 5

7 7 0 1 2 3 4 5 6

0 1 2 3 0 1 2 3

0 0 1 2 3 0 1 2 3

1 1

2 2

3 3

0 0

1 1

2 2

3 3

Transformed Table for f [Z8] with duplicates removed:

0 1 2 3

0 0 1 2 3

1 1

2 2

3 3

(b) Let K = Ker(f). Find the elements of K, and then also find the remaining (three)
LEFT cosets of K. (Each coset in this example will have two ‘names’; give both!)

(c) What do you notice about the relationship of the function images of elements that come
from the same coset? That is, for each of the distinct cosets a+K, what do you notice
about f(x) when x ∈ a+K?

Task 31 Consider the function f : Z8 → Z4 defined by f =

(
0 1 2 3 4 5 6 7

0 1 2 3 0 1 2 3

)
Given that f is a homomorphism, find K = Ker(f).
Verify that (G : K) = 4, and list the elements of each the four cosets a+K.
What do you notice about the relationship of the function images of elements
that come from the same coset? To what familiar group is Z8/K isomorphic?
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Task 32 (a) Find the homomorphism f : Z15 → Z5 obtained by setting f(1) = 1.
(You do NOT need to verify that it’s a homomorphism.)

f =

(
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0 1

)
Also find K = Ker(f), and list all cosets of K.
What do you notice about the relationship of the function images of elements
that come from the same coset?
To what familiar group is Z15/K isomorphic?

(b) Now find a second homomorphism g : Z15 → Z5 by setting g(1) = 3.
(You do NOT need to verify that it’s a homomorphism.)

g =

(
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0 3

)
Also find K = Ker(g), and list all cosets of K. What do you notice about the relationship
of the function images of elements that come from the same coset?
To what familiar group is Z15/K isomorphic?

The following general theorem reflects the observations you made in the three previous tasks.

Theorem 1
Let f : G → G′ be a homomorphism with Ker(f) = K. Let a, b ∈ G.
Then f(a) = f(b) if and only if b ∈ aK.

We will make use of this theorem later in this section. First, take a look at the next two tasks,
which request a proof and an application of Theorem 1, respectively.

Task 33 (a) Prove Theorem 1.
(b) Prove the following corollary to Theorem 1:

Let f : G → G′ be a homomorphism with Ker(f) = K.
Then f is 1-to-1 if and only if Ker(f) = {1}.

Task 34 Let f : Z15 → Z10 be a homomorphism with K = Ker(f) = {0 , 5 , 10}.
Suppose that f(3) = 8.

(a) Use Theorem 1 to find all x ∈ Z15 such that f(x) = 8.
(Remember to first re-write Theorem 1 using additive notation.)

(b) Determine the value of f(6). Then find all x ∈ Z15 such that f(x) = f(6).
Indicate your reasoning briefly.

(c) Determine the value of f(14). Then find all x ∈ Z15 such that f(x) = f(14).
Indicate your reasoning briefly.

(d) Find Ran(f), justifying your response.
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Let’s now go back to read Hölder’s comments about the relationship between quotient groups
and homomorphisms. Recall again that Hölder had earlier assumed H is a normal subgroup of the
group G, with |H| = m.

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

Each m elements of the original group G correspond to a specific element of the new group
[G/H]. The composition of elements corresponds between the two groups, that is, there exists
between the latter a [surjective] homomorphism. This isomorphism is called merohedral25,
because several elements of the first group correspond to one element of the second.

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

Re-writing this in the current language of homomorphisms, we get the following.

Theorem 2
Let H ▹ G and define f : G → G/H by f(a) = aH.
Then f is a homomorphism onto G/H. Furthermore, H = Ker(f).

Task 35 Prove Theorem 2.

Theorems 1 and 2 may seem quite natural after working the examples in the previous tasks.
But notice what Hölder said next:

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

In all cases the order of the group G equals the product of the orders of the groups G/H

and H. One can also say, that the group G is split into two factors. Here’s an example.§
The factors play a different role in the process. Hence the group G/H may always be
construed as the first factor, which is [a homomorphic image of] the group G, and the group
H construed as the second factor, which is a distinguished (maximal) subgroup of G. The
distinguished (normal) subgroup here forms the starting point, but one could also proceed
from the [surjective] homomorphism. Here’s an example.¶

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

25Recall that the word merohedral can be read to mean “many-to-one.”
§Hölder’s footnote: Cf. Dyck, Grouptheoretic studies, Math. Ann. vol. 20, p. 14.
¶Hölder’s footnote: Cf. Dyck, Grouptheoretic studies, these Ann. vol. 20, p. 14.
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This brings us to the piéce de resistance of Hölder’s paper! Not only does every normal subgroup
of G give us a quotient group that is a homomorphic image of G, but every homomorphic image of G
also corresponds to a normal subgroup of G!! Today, this latter result is known as the Fundamental
Homomorphism Theorem. Using the symbol ‘∼=’ to denote ‘is isomorphic to,’ we can state this
important theorem as follows:

Theorem 3: The Fundamental Homomorphism Theorem:
If f : G → G′ is a group homomorphism from G onto G′ with Ker(f) = K, then

G/K ∼= G′.

Given your work with the various examples in the project, the idea behind this powerful theorem
may seem fairly natural. Before looking at the details of the formal proof of the Fundamental
Homomorphism Theorem, let’s take a look at some tasks that illustrate it in a different way, and
also begin to reveal some of its power. First, take a look at the following diagram, which captures
the essence of both the theorem, and its proof.

G
a

G/K
aK

G′

f(a)

φ

g f

Figure 1: Diagram of the Fundamental Homomorphism Theorem

Task 36 Using ‘Dom(f)’ to denote the domain of the function f , here is a useful way to think about
what the Fundamental Homomorphism Theorem says:

Dom(f)/Ker(f) ∼= Ran(f) whenever f is a group homomorphism.

Explain clearly how this version of the Fundamental Homomorphism Theorem corresponds
to the formal statement given in Theorem 3.
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Task 37 Let G, H be groups with G finite and assume f : G → H is a homomorphism.
Use the Fundamental Homomorphism Theorem to explain why |Ker(f)| and |Ran(f)| are
both divisors of |G|. Give an example to show that H need not be finite.

Task 38 Consider the subgroup K = ⟨(1, 1)⟩ = {(0, 0) , (1, 1) , (2, 2)} of the abelian group Z3 × Z3.
Use the Fundamental Homomorphism Theorem to prove that Z3

∼= (Z3 × Z3)/K.
Do this by finding a function f : Z3 × Z3 → Z3 with Ker(f) = K.

Task 39 (a) Use the Fundamental Homomorphism Theorem to prove the following:

If G is a group with normal subgroups H,K and H ⊆ K, then G/H
K/H

∼= G/K.

Hint: What is the most natural way to define a function f : G/H → G/K?
(b) Use part (a) to show that G/H

K/H
∼= Z4, where G = Z24, H = ⟨12⟩ and K = ⟨4⟩.

Be sure to explain how you know that we obtain a cyclic group by indicating its gener-
ators.

Task 40 (a) Let G1, G2 be groups with J1 ▹ G1 and J2 ▹ G2.
Verify that (G1 ×G2)/(J1 × J2) is a group by showing that J1 × J2 ▹ G1 ×G2.

(b) Use the Fundamental Homomorphism Theorem to prove the following:

If G1, G2 are groups with J1 ▹ G1 and J2 ▹ G2, then

(G1 ×G2)/(J1 × J2) ∼= (G1/J1)× (G2/J2)

.
Hint: Consider the function f :G1 ×G2→(G1/J1)× (G2/J2) defined by

f((x, y)) = (xJ1, yJ2) for all (x, y) ∈ G1 ×G2.

(c) Consider the group G = Z9 × Z6 and subgroup H = ⟨3⟩ × ⟨3⟩.
Use part (a) to determine the familiar group to which G/H is isomorphic.
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Task 41 Complete the following proof sketch for the Fundamental Homomorphism Theorem.

Let G, G′ be groups, G′ a homomorphic image of G and f : G → G′ a homomorphism of G
onto G′ with Ker(f) = K. We wish to show G/K ∼= G′. To this end, define ϕ : G/K → G′

by ϕ(Ka) = f(a). Assume a, b ∈ G arbitrary. We must show:

(a) ϕ is well-defined: If Ka = Kb, then ϕ(Ka) = ϕ(Kb).

Assume Ka = Kb. Then
ϕ(Ka) = f(a) by definition of ϕ

= f(b) by Theorem 1 (K = Ker(f)) and the assumption that Ka = Kb

= ϕ(Kb) by

(b) ϕ is one-to-one: If ϕ(Ka) = ϕ(Kb), then Ka = Kb.

Assume ϕ(Ka) = ϕ(Kb).
Then f(a) = f(b) since ϕ(Ka) = f(a) and ϕ(Kb) = f(b) (by definition of ϕ)
Thus, Ka = Kb by

(c) ϕ is onto: For every y ∈ G′, there exists Ka ∈ G/K such that ϕ(Ka) = y.

Assume y ∈ G′. Note that G′ = Ran(f) since .
Thus, there exist a ∈ such that f(a) = y by definition of .

Note that Ka ∈ .
Furthermore, by definition of ϕ, we have ϕ(Ka) = = y .

(d) ϕ preserves operation: ϕ(KaKb) = ϕ(Ka)ϕ(Kb)

Observe that
ϕ(KaKb) = ϕ(K(ab)) by

= f(ab) by
= f(a)f(b) since
= ϕ(Ka)ϕ(Kb) by
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In his final comments about the general concept of a quotient group, Hölder hinted at an
intriguing relationship between properties of the quotient group G/H, the original group G and the
normal subgroup H.

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

In all cases the order of the group G equals the product of the orders of the groups G/H and
H. One can also say, that the group G is split into two factors. Here’s an example.∗∗The
factors play a different role in the process. Hence the group G/H may always be construed as
the first factor, which is a [homomorphic image] of the group G, and the group H construed
as the second factor, which is a distinguished (normal) subgroup of G.
To the problem of splitting a group into two factors, one can pose to oneself the converse:
Given two groups as factors, from these piece together a group as the product. This problem
sometimes admits multiple solutions, I hope to treat this on another occasion.

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

Hölder himself continued this particular paper by applying the quotient group concept to solve
another problem in group theory. This latter problem goes beyond the scope of this project, as does
the converse splitting problem that Hölder posed at the end of this last excerpt. We thus bring our
study of quotient groups in this project to an end with two examples that show how a group G can
be ‘split into’ G/H and H which represent distinct aspects of G, by ‘factoring out’ all the elements
of G with a particular property.

Task 42 In this task, you will prove that ‘factoring out’ all the elements of G that have finite order
results in a factor group G/H that has only one element of finite order.
Let G be an abelian group and H ▹G. Assume that H contains all elements of G that have
finite order. Prove that no non-identity element of G/H has finite order.
Do this by assuming aH ∈ G/H has finite order, where a ∈ G; then prove aH = H.

Task 43 Recall that a commutator of a group G is any element of the form xyx−1y−1, where x, y ∈ G.

(a) Let H be a subgroup of G and assume that H contains all the commutators of G.
Recall from Task 7 that H is therefore normal in G, so that we can form the quotient
group G/H. Prove that G/H is abelian.

(b) Notice that the number of distinct commutators is a measure of the degree to which
G is non-abelian; for instance, every abelian group has only the identity as its single
commutator. Explain how part (a) shows that factoring out the commutators from a
group results in an abelian quotient group.

∗∗Hölder’s footnote: Cf. Dyck, Grouptheoretic studies, Math. Ann. vol. 20, p. 14.
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APPENDIX I: Cauchy’s Proof of Lagrange’s Theorem for Permutation Groups26

In his initial description of the quotient group defined by a normal subgroup (Section 4 of this
project), Hölder remarked that the array scheme he was employing had already been used in Augustin
Cauchy’s27proof of a certain theorem. This appendix presents Cauchy’s original proof of that theorem,
which you will have already encountered (stated for groups in general) under the name Lagrange’s
Theorem.28 Although Cauchy was thinking only of permutation groups29 at the time, his proof strategy
works perfectly well for abstract groups. In fact, the proof strategy found in most of today’s textbooks,
while phrased in the language of cosets, is strongly reminiscent of Cauchy’s approach. We will say more
about the modern statement of the theorem and its proof below. But first, begin by reading (and re-
reading!) Cauchy’s proof of Lagrange’s Theorem (for permutation groups), as well as the comments on
his strategy that follow this excerpt. As you do so, also consider how Cauchy’s notation and presentation
of the array is similar to, and different from, that given by Hölder on page 10 of this project.

Before reading Cauchy’s proof, take note of the following conventions that he had introduced
in an earlier excerpt from his Exercices d’analyse et de physique mathématique [Cauchy, 1815a].

• A ‘system of conjugate permutations’ is a finite set of permutations that is closed under
permutation products; since permutation multiplication is associative, this implies that
any ‘system of conjugate permutations’ is a group (or subgroup) of permutations (as
noted by Hölder in Section 1 of this project).

• Series (1) designates the system of all possible N = n! permutations on n letters; that
is, Series (1) is the permutation group Sn.

• Series (2) designates an arbitrary system of conjugate permutations (or subgroup of Sn)
on n variables, with the individual permutations in the series denoted as 1, P,Q,R . . .

26The proof and related tasks in this appendix are drawn from another of the author’s primary source projects, Abstract
Awakenings in Group Theory, which explores elementary group theory through the writings of Lagrange, Cauchy and
Cayley. To obtain the current version of that project, contact the author at janet.barnett@csupueblo.edu, or visit
www.cs.nmsu.edu/historical-projects/projects.php for an earlier version.

27Augustin Cauchy was born in Paris on August 21, 1789, the year the French Revolution began. His family moved to
Arcueil, a town just outside of Paris, to avoid the turmoil of the Revolution, and Cauchy spent his earliest days there.
He was educated by his father, who counted a number of important scientists and mathematicians, including Lagrange,
among his friends. It was Lagrange, in fact, who advised Cauchy’s father that his son should obtain a good grounding in
languages before starting a serious study of mathematics. Cauchy studied classical languages for two years before being
trained as an engineer. He worked as an engineer in Cherbourg, France from 1810–1812, during which time he undertook
his first mathematical researches. He then lived and worked as a mathematician in Paris for most of his remaining life,
with the exception of eight years (1830–1838) of self-imposed exile from France for political reasons. Even after returning
to Paris in 1838, he refused to take an oath of allegiance to the political regime then in power and was unable to regain his
various teaching positions. Cauchy’s staunch royalism and his equally staunch religious zeal made him contentious, and
his relations with other mathematicians and scientists were often strained. Nevertheless, his mathematical contributions
were (and still are) widely admired for their depth, their breadth, and their rigor. He is especially remembered for his
efforts to reformulate the foundations of calculus in terms of limits defined via absolute value inequalities.

28The name of J. L. Lagrange (1736–1813) is associated with this theorem due to a related result that Lagrange stated
prior to Cauchy’s work in permutation theory, but within the (more limited) context of the number of forms resulting
from permutations of variables of a function. For more on this history, see [Roth, 2001].

29Cauchy’s research on permutations was completed in two different periods, the first of which occurred around 1812.
In that year, he presented a paper entitled Essai sur les fonctions symétriques to the French Academy of Sciences, the
contents of which were later published in two articles in 1815. (See [Cauchy, 1815a,b] in the bibliography for their titles.)
He did not publish anything further on permutations until 1844–1846, when his extensive Mémoire sur les arrangements
que l’on peut former avec des lettres données appeared, in addition to 27 shorter articles.
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∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

Theorem30 The order of a system of conjugate permutations in n variables will always be a
divisor of the number of arrangements N that one can form with these variables.
Proof We suppose that the given system is given by the series (2), and we let M be the order
of this system. If the series (2) is the same as the series (1), then we have exactly M = N ;
otherwise, we designate by U, V,W, . . . those permutations which are part of the series (1) but
do not appear in the series (2). If we call m the number of terms of the series

(5) 1, U, V,W, . . . . . .

then the table

(6)



1, P, Q, R, . . .

U, UP, UQ, UR, . . .

V, V P, V Q, V R, . . .

W, WP, WQ, WR, . . .

etc,

will give us m horizontal rows each composed of M terms, with all the terms of each row distinct
from each other.
If, moreover, two different horizontal rows, for example the second and the third, include equal
terms, in which case we would have

V Q = UP,
we would conclude from this that

V = UPQ−1

or simply
V = US,

S = PQ−1 being one of the terms of series (2). In this case, the first term V of the third
horizontal row in the table (6) would be one of the terms of the second [horizontal rows].
Thus, if the first term of each horizontal row is taken from outside [of all of] the preceding series,
all the terms of table (6) will be distinct from each other. Granting that this condition is fulfilled,
we continuously add new series to table (6), thereby increasing the number m [of rows]. This
operation will stop only when the table (6) includes all N terms contained in the series (1); but
then we will evidently have

N = mM.
Thus, M will be a divisor of N .

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

30All translations into English from Cauchy’s paper are due to the project author.
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Cauchy’s basic strategy in his proof of this theorem was to form an m by M array in which every
one of the possible N = n! permutations on n letters appears exactly once, and M is the order of the
given system of conjugate permutations. The key to doing this is to make sure that every element is
placed in some row of the table in such a way that:

(i) no row contains repeated elements ; and

(ii) no element of a given row appears in some earlier row.

Cauchy really did not say how he knew condition (i) held for all rows in the array, although (i) clearly
holds for the first row in which each of the M distinct permutations of the given system are listed exactly
once. To convince yourself that condition (i) holds for the other rows, consider what would happen, for
example, if UP = UT , remembering that P ̸= T . Concerning condition (ii), Cauchy gave considerably
more detail, arguing essentially that careful selection of the first element of each row permits us to
successively add new rows containing exactly M elements, all of which are distinct from the elements
in every preceding row, until all N = n! possible permutations on n variables are exhausted.

Task I.1 below outlines the construction of a table satisfying these two conditions in a very specific
case. Task I.2 then asks you to re-write Cauchy’s proof using the current terminology of permutation
groups. The following list summarizes once more how this terminology is related to that of Cauchy.

• The symmetric group Sn is the set of all permutations on n objects.

– This is what Cauchy called (somewhat long-windedly):
‘the system of all permutations that one can form with n letters x, y, z . . ..’

– In Cauchy’s proof of Theorem 1, series (1) lists the elements of Sn.
– The order of Sn is n!.

• A subgroup of Sn is a non-empty subset H ⊆ Sn which is closed under products; since H is
necessarily finite, it is also therefore closed under inverses.

– This is what Cauchy called a ‘system of conjugate permutations.’
– In Cauchy’s proof of Theorem 1, series (2) lists the elements of a subgroup H.
– Sn is always considered a subgroup of itself, since Sn ⊆ Sn.

Using this terminology, we now re-state Cauchy’s Theorem 1 as follows:

Lagrange’s Theorem for the Symmetric Group Sn

If H is a subgroup of Sn, then the order of H divides the order of Sn.
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Task I.1
This task examines Cauchy’s proof of Lagrange’s Theorem in a specific example.
Consider the set of all permutations on the four letters x, y, z, u.
From this set, let H = {h1 , h2 , h3 , h4} be the subset consisting of the following:

h1 = 1 ; h2 = (x, y, z, u) ; h3 = h2
2 = (x, z)(y, u) ; h4 = h3

2 = (x, u, z, y)

(a) Explain how we know that H is a system of conjugate permutations.

(b) What are the values of N and M in Cauchy’s proof for this specific example?
Use these values to explain why the completed table should have six rows.

(c) In the partially completed table below a first element (denoted r2, r3, r4 respectively)
has been selected for rows 2–4.

(i) Assume for now that the selections made for r2, r3, r4 are valid.
WITHOUT COMPUTING ANY ADDITIONAL PRODUCTS, explain why:

(α) r4h3 ̸= r4h4 (β) r3h3 ̸= r4h3 (γ) r4h3 ̸= r2h4

Note: Part (γ) corresponds to the section of Cauchy’s proof (beginning with the
assumption V Q = UP ) that shows different rows do not overlap.

(ii) Explain why the particular values chosen for r2 and r3 are valid choices.
(iii) Complete row 3, and explain why the particular value chosen for r4 is valid.
(iv) Complete row 4, and explain why there are eight possible choices for the first entry

(r5) of row 5. Select one of these and explain why your choice is valid.
How many possible choices remain for the first entry (r6) of row 6?
(You do not need to complete these last two rows, buy may do so if you wish.)

h1 = 1 h2 = (x, y, z, u) h3 = (x, z)(y, u) h4 = (x, u, z, y)

r2 = (x, y) r2h2 = (x, y)(x, y, z, u) r2h3 = (x, y)(x, z)(y, u) r2h4 = (x, y)(x, u, z, y)

= (y, z, u) = (x, z, y, u) = (x, u, z)

r3 = (x, z) r3h2 = (x, z)(x, y, z, u) r3h3 = (x, z)(x, z)(y, u) r3h4 = (x, z)(x, u, z, y)

= = =

r4 = (x, u)

(d) Suppose the first element of row 2 in the above table were chosen to be r′2 = (y, z, u),
instead of r2 = (x, y). How would this change the resulting table? Would we have
been able to use the same values of r3, r4, r5, r6 in this case? Why or why not?
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Task I.2
Write a fully general rigorous proof of Lagrange’s Theorem for an arbitrary finite group G,
but using Cauchy’s strategy of building an array in which all elements of G appear exactly
once. In order to do this in full generality, you should introduce indexed variables to denote
the elements of the subgroup H, as well as for the first element of each row of the array.
(See Task I.1.) It will also be useful to use coset notation to represent each row of the array.
After formally (and carefully) using recursion to define the array, explicitly prove that the
completed array satisfies the following two conditions:

(i) no row (or coset) contains repeated elements ; and
(ii) no element of a given row (or coset) appears in some earlier row (or coset).

Also add detail and/or rephrase Cauchy’s reasoning where you feel this is needed and/or
helpful.
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APPENDIX II: Cayley’s Classification of Groups of Small Order31

In the closing section of the inaugural paper on abstract groups, Arthur Cayley32 began the task of
classifying all groups of finite order [Cayley, 1854]. Having proven that all groups of prime order are
necessarily cyclic, Cayley knew that there is only one group (up to isomorphism) of order p for any
given prime p. When n is composite, however, a group of order n can be cyclic, but is not necessarily
so. The problem that Cayley thus took up at this point of his paper was that of identifying all possible
non-isomorphic groups of order n for various composite values of n. If these distinct non-isomorphic
group structures could be fully identified, they would in turn serve as prototypes for all groups of that
same order, much as Zp serves as the prototypical group of order p when p is prime. That is, any group
of order n would be isomorphic to one of the distinct prototypical structures available for that order.

In his 1854 paper, Cayley succeeded in classifying all groups of order n = 4 and n = 6; in his
later paper [Cayley, 1859], he also gave the classification of groups of order n = 8. In time, it became
clear that the problem of classifying all groups of finite order is (very!) difficult — so much so that
mathematicians eventually turned to the (presumably more straightforward) task of classifying certain
types of finite groups. Simple groups were considered especially important in this regard, due to the
special role they play within group theory: much as prime numbers serve as the basic building blocks of
all natural numbers, simple groups serve as the basic building blocks of all groups. Simple groups are
today defined as those with only two normal subgroups: the trivial subgroup and the group itself. The
underlying concept itself can be traced back to Galois’s work on algebraic solvability.

The first major results related to the classification of finite simple groups were published in 1870 by
Camille Jordan (1838–1922). Yet it was not until 1981, after a coordinated effort by over 100 different
mathematicians beginning in 1965, that the search for all finite simple groups was declared complete.
Even then, gaps initially remained in the proof — as might well be expected with a proof that stretched
out over approximately 500 journal articles totaling 10,000–15,000 pages. Known as the ‘Enormous
Theorem,’ the full Classification of Finite Simple Groups Theorem is now considered by experts to be
fully established. The publication of a revised ‘second generation proof’ currently under way by the
American Mathematical Society is expected to fill approximately twelve volumes and 3000–4000 pages.

The excerpt on the next page presents the conclusion of Cayley’s analysis of all groups of order 6,
in which he established that there are only two such groups, with the Cayley tables given below.

31The material presented in this appendix is drawn from another of the author’s primary source projects, Abstract
Awakenings in Group Theory, which explores elementary group theory through the writings of Lagrange, Cauchy and
Cayley. To obtain the current version of that project, contact the author at janet.barnett@csupueblo.edu, or visit
www.cs.nmsu.edu/historical-projects/projects.php for an earlier version.

32Born in England in 1821, Arthur Cayley and his parents lived in St. Petersburg, Russia during the first eight years of
his childhood before returning to England to live near London. Cayley began publishing research papers in mathematics
while still an undergraduate at Trinity College, Cambridge. Following his graduation in 1842, he taught as a Fellow
at Cambridge for four years before training as a lawyer to secure a means of support. Admitted to the bar in 1849,
Cayley worked as a lawyer for 14 years while continuing his mathematical research. Despite a significant decrease in
income, Cayley left the legal profession in 1863 to accept an appointment as Sadleirian professor of Pure Mathematics at
Cambridge, thereafter devoting his professional life to mathematical research until his death at his home in Cambridge
after a long period of suffering. Cayley’s mathematical interests were strongly influenced by the general state of British
mathematics at the time, and especially the concept of a ‘symbolical algebra’ in which one begins with formal laws for
a given set of symbols and operations on those symbols and only later interprets these as having particular meaning, in
contrast to ‘arithmetical algebra,’ which derives its laws from the actual meaning of operations on numbers. Alongside his
collaborator J. J. Sylvester (1814–1897), Cayley is widely recognized as one of the founders of matrix theory. In addition
to his contributions to algebra, which include both the first paper ever written on matrix theory and the first paper ever
written on group theory, his 900+ papers and notes include publications on nearly every aspect of modern mathematics.
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If we represent the first of these two forms, viz. the group

1, α, α2, γ, αγ, α2γ, (α3 = 1, γ2 = 1, γα = αγ),

by the general symbols

1, α, β, γ, δ, ϵ,

we have the table

1 α β γ δ ϵ

1

α

β

γ

δ

ϵ

1 α β γ δ ϵ

α β γ δ ϵ 1

β γ δ ϵ 1 α

γ δ ϵ 1 α β

δ ϵ 1 α β γ

ϵ 1 α β γ δ

while if we represent the second of these two forms, viz. the group

1, α, α2, γ, αγ, α2γ, (α3 = 1, γ2 = 1, γα = α2γ),

by the general symbols

1, α, β, γ, δ, ϵ,

we have the table

1 α β γ δ ϵ

1

α

β

γ

δ

ϵ

1 α β γ δ ϵ

α β 1 δ ϵ γ

β 1 α ϵ γ δ

γ ϵ δ 1 β α

δ γ ϵ α 1 β

ϵ δ γ β α 1
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An instance of a group of this kind is given by the permutation of three letters; the group

1, α, β, γ, δ, ϵ,

may represent a group of substitutions33 as follows:

abc, abc, abc, abc, abc, abc,
abc cab bca acb cba bac

Another singular instance is given by the optical theorem proved in my paper “On a property of
the Caustic34 by refraction of a Circle, ….”

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

Task II.1
In this task, we translate the permutations of three letters defined by Cayley in the last
excerpt into the notation of S3.
For example, letting a = 1, b = 2 and c = 3, the permutation α which Cayley denoted

simply by the two rows abc

cab
corresponds to the cycle α =

(
123

312

)
= (1, 3, 2).

(a) Write the permutations denoted by Cayley as β, γ, δ and ϵ as cycles in S3.
(b) Use cycle multiplication to verify the row corresponding to α in the Cayley table. That

is, verify that α2 = β, αβ = 1, etc. using the cycles of S3 denoted by 1, α, β, γ, δ, ϵ.

Task II.2 Let H = ⟨α⟩.

(i) Use the Cayley table for S3 on the preceding page to verify that H = {1 , α , β } and
γH = {γ , ϵ , δ }.

(ii) Describe where H, γH show up in the Cayley table of S3.
What do you notice about the way Cayley presented H and γH in this table?
Explain in particular how the pattern formed by the double lines in this Cayley table
relates to the quotient group G/H.

33Cayley’s actual notation for substitutions (i.e., permutations) was a variation of the notation in use today (which was
first introduced by Cauchy); we have modified Cayley’s notation slightly to be consistent with current notation, other
than his practice of not using parentheses.

34A caustic is a curve related to the reflection (or refraction) of light off a surface in the study of optics. Cayley did not
say more about this example in his 1854 group theory paper, but did describe it in considerable detail in his paper “On
a property of the Caustic by refraction of a Circle.” Interestingly, these two papers were submitted for publication in the
journal Philosophical Magazine on the same day, and some scholars (e.g., [Chakraborty and Chowdhury, 2005]) contend
that it was Cayley’s discovery of this second concrete example of a non-abelian group of order 6 which inspired him to
generalize the abstract group concept from that of a permutation group.
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APPENDIX III: Camille Jordan, and equivalence modulo a normal subgroup
In Section 5 of his discussion of the quotient group concept, Hölder stated:

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

The explanations of the previous paragraphs can also be expressed as follows: One could call
two elements from the entire group G equivalent, if they can be conveyed into each other
through multiplication by an element of the distinguished (normal) subgroup H. Due to
the interchangeability of the group H with the elements of the entire group, one need not
distinguish in this definition between right and left multiplication. For the same reason, it
follows that multiplying equivalents by equivalents yields equivalents. Thus if one partitions
the elements of the entire group into classes, such that equivalent elements sit in the same
class, and inequivalent elements in different classes, then one obtains a composition of the
classes, for which the group property holds.

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

As noted earlier in this project, Hölder remarked no further on these claims, but simply took the
notion of equivalency modulo a (normal) subgroup as well-known at the time. Indeed, mathematicians
in his era had been working implicitly with this notion for years within the context of permutation
groups, and the algebraist Camille Jordan35(1838–1922) had even explicitly written about it within
that context in his paper “Sur la limite de transitivité des groups non alternés (On the limits of
transitivity in non-alternating groups)” [Jordan, 1872–1873]. In this appendix, we explore the concept
of an equivalence relation in general, as well as the particular equivalency relation on a group that is
defined by a (normal) subgroup through excerpts from this paper.

We begin with an excerpt from Part I of Jordan’s paper,36 in which he outlined his motivation
for explicitly introducing equivalency notation into the study of permutation groups.

35Camille Jordan’s family included famous painters, politicians and scientists. Jordan himself entered the École
Polytechnique to study mathematics in 1855. He completed a two-part doctoral thesis which addressed topics in
algebra and integral equations in 1861. Afterwards, he worked for a time as an engineer before stepping into a
professorial appointment at the École Polytechnique in 1876, one of several that he held throughout his lifetime. As
a research mathematician, Jordan contributed to essentially every mathematical field studied at the time. He work
was particularly influential in the theory of permutation groups, for which he proved a version of the theorem which
came to be known as the Jordan-Hölder theorem. He also contributed significantly to efforts to classify all groups of
finite order. Jordan’s comprehensive text Traité des substitutions et des équations algebraiques, published in 1870, was
awarded the Poncelet Prize by the French Académie des Sciences and became the standard reference in the study of
group theory for years to come. He is also remembered today by analysts and topologists for his work on the Jordan
curve theorem, which states that a simply closed curve divides a plane into exactly two regions; his other contributions
to analysis include a generalisation of the criteria for the convergence of a Fourier series. In 1912, Jordan retired from
his various academic positions, including editor of the important Journal de Mathématiques Pure et Appliquées which
he had assumed in 1855. Sadly, his final years saw three of his six sons killed in World War I. Jordan himself passed
away in Paris in 1922.

36All translations into English from Jordan’s paper are due to the project author.

38



∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

Around the year 1845, the era when the work of M. Bertrand drew Cauchy’s attention to
the theory of substitutions [permutations], that great mathematician undertook an extensive
series of research into that subject, the results of which are found in the Comptes Rendus.
The principal theorem that he obtained is the following

Every group with order divisible by a prime number p contains an element37 of order p.

The importance of this proposition is manifest, and one may be surprised that it has given
rise, thus far, to almost no application. But Cauchy’s thereom has at last been completed
and generalized, in the most happy fashion, by the Norwegian, M. Sylow.38

…
By its simplicity, its clarity and its generality, [M. Sylow’s] proposition39 surely merits to be
considered fundamental; and we have not doubt that it will lead to important consequences.
In this paper, we give a first application [of Mr. Sylow’s theorem] to the study of the limit of
transitivity for permutation groups.

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

37In keeping with the more general context of this project, we have again use the word ‘element’ in place of Jordan’s
term ‘substitution’ when he was writing of individual elements of a permutation group.Although Jordan did work within
the context of permutation groups himself, the theorems we cite in this project were soon recognized as valid for any
arbitrary group.

38After completing his studies at Christiania University, the Norwegian mathematician Peter Ludwig Mejdell Sylow
(1832–1918) taught mathematics at the high school level from 1858–1898. Throughout this time, he continued to study,
and eventually contribute to, advanced mathematical topics on his own. Sylow found the papers on the solvability
of algebraic equations by radicals that were written earlier in the nineteenth century by his fellow countryman Niels
Abel (1802–1829) to be of particular interest. The theory of equations was thus one of the topics that Sylow studied
while visiting Berlin and Paris on a travel scholarship in 1861. Upon his return to Norway in 1862, Sylow delivered
a series of lectures on Galois theory while serving as a substitute instructor at Christiania University. It was during
these lectures that he posed the question that led to the important “Sylow Theorem” for which he remains justifiably
famous today. His proof of this profound result, which he is believed to have completed as early as September 1870,
was published in the 10-page paper Théorèmes sur les groupes de substitutions in 1872. Sylow’s earlier 1862 lectures
at Christiana University were also successful in providing a fundamental appreciation of Galois theory to those who
attended them, including a young Sophus Lie (1842-1899) who went on to become a renowned mathematician in his
own right. In 1894, the University of Copenhagen awarded Sylow an honorary doctorate, thereby allowing him to
spend the final 20 years of his life teaching as a university professor in a special chair which Lie arranged to have
created especially for Sylow at Christiania University.

39The proposition being praised by Jordan in this excerpt is a three-part theorem giving detailed information about
the number of subgroups of a fixed order that a given finite group necessarily contains. As Jordan noted, Cauchy had
already proved that a group whose order is divisible by a prime p has an element of order p, which in turn implies that
the group contains a (cyclic) subgroup of order p. Sylow’s generalization of this basic result can be stated as follows:

Sylow’s Thoerem If pn is the largest power of the prime p to divide the order of a group G, then
1. G has subgroups of order pn.
2. G has 1 + kp such subgroups (which are today called p-Sylow subgroups).
3. Any two such subgroups are conjugate; that is, if H,K are subgroups of G of order pn, then there

exists x ∈ G such that K = x−1Hx.
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After providing, in Part I of his paper, the promised first application of Sylow’s celebrated theo-
rem, Jordan began Part II of his paper as follows:

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

We will now deduce from these same principles a new theorem, more extensive than any
previous results. But to do so, it will be good to resume the proof of an auxiliary proposition
that we have established elsewhere in its essentials (Traité des substitutions, 595), but by
indirect means and under a statement that will not be convenient in the current question.
The developments into which we will enter, and the definitions on which they are based seem,
moreover, likely to considerably simplify the demonstration of several important propositions.
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In the remainder of this appendix, we take a look at the definitions to which Jordan referred in
this last excerpt, and how those definitions relate both to the concept of a quotient group and the
current definition of an equivalence relationship. First, let us recall that current definition:

Definition and Notation
Let S be a set and R a (binary) relationship on S; that is, R ⊆ {(x, y) | x, y ∈ S}.
Given x, y ∈ S, the notation xRy denotes that (x, y) ∈ R.
R is an equivalence relationship on S if and only if the following three properties
hold;
(1) R is reflexive: (∀x ∈ S)(xRx)

(2) R is symmetric: (∀x, y ∈ S)(xRy ⇒ yRx)

(3) R is transitive: (∀x, y, z ∈ S)(xRy ∧ yRz ⇒ xRz)

Here are two standard examples of equivalence relationships with which you are already familiar:

• Equality (=) on any set of objects S; and

• Equivalence on the set of fractions S = {m
n
|m,n ∈ Z+}, where the fractions m

n
, k
l
∈ S are said

to be equivalent if and only if they both reduce to the same lowest term fraction a
b
∈ S.40

40The proof of transitivity under this definition of fraction equivalence is straightforward only if we know that all
fractions reduce to a unique lowest-term fraction. For this purpose of this project, in which fraction equivalence is
mentioned solely as a reminder of a familiar instance of an equivalence relationship, the reader may simply assume
uniqueness of lowest-term representations for fractions without proof. This uniqueness assertion is itself a consequence
of the uniqueness of prime factorization in the set of natural numbers; in fact, these two uniqueness theorems turn out
to be equivalent! For more about this surprising and deep theorem, see David Pengelley’s article Quick, Does 23/67
Equal 33/97? A Mathematician’s Secret from Euclid to Today [Pengelley, 2013].
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The first of these (equality) is the quintessential equivalence relationship, in that the three properties
that all equivalence relationships are required to possess — reflexivity, symmetry and transitivity —
were identified as the essential characteristics needed to capture the idea that any two equivalent
elements seem ‘equal’ to each other in some way; in other words, all equivalent relations mimic
equality in these three fundamental ways. Task III.1 examines another equivalence relationship with
which you are likely also familiar, and compares it briefly to the relationship of equality (=).

Task III.1 Given m ∈ Z+ and x, y ∈ Z, we say that x is congruent to y modulo m

(denoted x ≡ y mod m) if and only if m|(x− y).

(a) Verify that congruence modulo m on the set of integers satisfies the definition of an
equivalence relationship.

(b) For the sake of specificity, let m = 4 and consider the relationship of integer con-
gruence modulo 4.

(i) Find the set S0 of all x ∈ Z such that x ≡ 0 mod 4.
Given x, y ∈ S0, what do you notice about the relationship between x and y?
How else might you describe the elements of this set?

(ii) Find the set S1 of all x ∈ Z such that x ≡ 1 mod 4.
Given x, y ∈ S1, what do you notice about the relationship between x and y?
How else might you describe the elements of this set?

(iii) For a given r ∈ Z, the set Sr = {x ∈ Z | x ≡ r mod 4} is called the equivalence
class of r modulo 4. In parts (i) and (ii), you found two of the equivalence
classes for the relationship of integer congruence modulo 4. Find all other
distinct equivalence classes for this relationship, and justify your answer.

(c) For a general equivalence relationship R on a set S, the equivalence class of an
element a ∈ S is defined as the set Sa = {b ∈ S| aRb}. For the relationship of
equality (=) on Z, how many elements are in each equivalence class, and why?

In the following excerpt from [Jordan, 1872–1873], notice that he used the phrase “ordinary con-
gruences” to refer to integer modular congruences41 such as the one you examined in the preceding

41The theory of integer congruences was first systematically developed by the celebrated mathematician Carl
Friedrich Gauss (1777–1855), who also introduced the notation ‘x ≡ y mod m.’ Gauss was interested in solving
number theoretic equations of the form xm ≡ p (mod q), where p and q are odd primes and x,m ∈ Z+. An especially
famous result of this type is the quadratic reciprocity law which describes a relation between the solvability of the
equations x2 ≡ p (mod q) and x2 ≡ q (mod p) for two different odd primes p, q. This difficult and beautiful result was
first proven by Gauss in his important 1801 treatise on number theory, Disquisitiones Arithmeticae, where he stated
the quadratic reciprocity law for primes p, q as follows:

If q ≡ 1 (mod 4), then x2 ≡ p (mod q) is solvable if and only if x2 ≡ q (mod p) is solvable.
If q ≡ 3 (mod 4), then x2 ≡ p (mod q) is solvable if and only if x2 ≡ −q (mod p) is solvable.

Gauss also looked for reciprocity laws for higher powers, eventually formulating a law for the ‘biquadratic’ case
[x4 ≡ p (mod q)] by introducing a new set of ‘integers’ known as the complex (or Gaussian) integers.
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task. Also note that, where we have used the word ‘subgroup’ below, Jordan himself instead used the
word ‘group.’ Given the context in which he was working, Jordan’s use of the word ‘group’ always
referred to a group of permutations; in other words, to a subgroup of Sn for some n ∈ Z+. Although
we have instead used the word ‘subgroup’ (in keeping with the more general context of this project),
it will be helpful in completing some of the tasks below to keep in mind that Jordan himself always
meant a group of permutations.

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

7. Definitions. — Two elements s and t, commutable with the subgroup H, are said to be
congruent module the subgroup H if there is an equality of the form

s = th,

h being an element of H.
One can express this relation by a formula analogous to that of ordinary congruences:

s ≡ t mod H.
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Let’s pause here to examine Jordan’s definition.

Task III.2
Assume G is a group and H is a subgroup of G.

(a) What does Jordan mean by the expression “[the] elements s and t [are] commutable
with the subgroup H’? How would Hölder refer to a subgroup H with which all
elements of the group G are commutable?

(b) Prove that the definition given by Jordan in the preceding excerpt satisfies the
definition of an equivalence relationship. Explain why it is not necessary to assume
that the s, t are commutable with H in order to carry out this verification.

Task III.3
Let G = Z and H = ⟨4⟩. Find the equivalence classes of G for the congruence relationship
modulo H. Compare these to what you found in Task III.1.
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As you continue now with your reading of Jordan, pay attention to the types of objects that he
is multiplying.

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

One can multiply two congruences member by member. In fact [from]

s ≡ t mod H = th

s′ ≡ t′ mod H = t′h′ ,

one will have

ss′ = tht′h′ = tt′t′−1ht′h′,

and since t′−1ht′ is an element of H, by assumption,

ss′ ≡ tt′ mod H

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

Task III.4
Describe the type of objects that Jordan was multiplying here. How are these related to
the types of objects that Hölder was multiplying in his description of the quotient group
in the excerpt on pages 10–1 of this project?

Task III.5
Re-read Jordan’s proof that ss′ ≡ tt′, provided s ≡ t, and s′ ≡ t′.
What assumption specifically did Jordan make in Section 7 of his paper that allowed him
to conclude that t′−1ht′ is an element of H? Why is it important to know that t′−1ht′ is
an element of H?

As you read the final excerpt that we will consider from Jordan’s paper, pay attention to how
his notion of the group that Jordan denoted by ‘G

H
’ compares to the concept that Hölder formally

christened as a quotient group.
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We will say that a [set] of elements s1, s2, . . . (all commutable with the same subgroup H)
forms a group modulus H, if there is for all values of α and β a relationship of the form

sαsβ ≡ sγ mod H

The order of this group will be the number of distinct elements, incongruent under the modulus
H, that it contains.
Let G be the group derived from the elements s1, s2, . . ., where these are combined between
them in the usual manner. We designate by G

H
the group formed by these same elements

under the modulus H. It is straightforward to see that the order of G is equal to the product
of the order O of G

H
by the order Ω of the group I formed by the elements that are common

to G and H.
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Task III.6
What is the name we give today to the group property that Jordan described by “there is
for all values of α and β a relationship of the form sαsβ ≡ sγ mod H”? Why is it sufficient
for him to require that the set H = {s1, s2, . . .} satisfies this property in order to conclude
that the set H forms a group?

Task III.7
Describe carefully the type of objects in the set that Jordan denoted G

H
. Notice that these

are not cosets, as was the case for the objects that Hölder included in the quotient group
G/H. How are the elements of Jordan’s group G

H
related to those of Hölder’s quotient

group G/H?

Task III.8
Why do you think Jordan brought in the group ‘ I formed by the elements that are common
to G and H’ in his statement concerning the order of the group G? Why was it not necessary
for Hölder to mention this group I in his discussion of the quotient group G/H?

Jordan went on in his paper to discuss properties of isomorphic groups of the form G
H

, G′

H′ , and to
relate these back to the idea of the factors of composition that Hölder discussed in Section 3 of this
project. As these ideas go beyond the scope of this project, we leave off our reading of Jordan’s paper
at this point. To bring this appendix to closure, we instead look at another important property of
equivalence relationships, again relating it back to the specific equivalence relationship of congruence
modulo a subgroup H in the two tasks that follow the general definition given on the next page.
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Definition
Given a set S, let Pα be a non-empty subset of S for each α ∈ I, where I is an indexing
set. The collection P = {Pα }α∈I is a partition of S if and only if every element of S
appears in one and only one Pα ∈ P . That is, P = {Pα }α∈I is a partition of S if and
only if the following conditions hold:

1. S =
∪
α∈I

Pα.

2. The subsets Pα are mutually disjoint: given α, β ∈ I with α ̸= β, then Pα ∩Pβ = ∅.

Task III.9
Let G be a group and H a subgroup of G. In Task III.2, you proved that the relationship

s ≡ t mod H if and only if s ∈ tH

defines an equivalence relationship on G, even in the case where H is not normal in G.
Let P be the collection of all (left) cosets of H; that is, P = {aH |a ∈ G}.

(a) Prove that P is also the set of equivalence classes modulo H.
That is, prove that for all a, b ∈ G, we have aH = bH if and only if a ≡ b mod H.

Notice that this means aH = bH if and only if a ∈ bH, so that every
element of the coset bH gives us another ‘name’ for that coset, and only
those elements do so. This notion of having multiple names for one object
is analogous to what happens with a set of equivalent fractions (e.g., 6

8
and

all other fraction equivalents of 3
4

serve as names for “the same fraction” ).

(b) Prove that the elements of P are mutually disjoint.
That is, prove that for all a, b ∈ G, we have aH ̸= bH if and only if aH ∩ bH = ∅.
(Note that the contrapositive of this states: aH = bH if and only if aH ∩ bH ̸= ∅.)

(c) Now complete the proof that P is a partition of G by explaining why G =
∪
a∈G

aH.

Task III.10 This task generalizes Task III.9 to an arbitrary equivalence relationship.

(a) Let S be a set and R an equivalence relationship on S.
Let P be the set of equivalence classes of R.
Prove that P defines a partition of S.

(b) Now let S be a set and P = {Pα }α∈I be a partition of S, where I is an indexing
set.
Define the relationship R on S as follows:

sRt if and only (∃α ∈ I)(s ∈ Pα ∧ t ∈ Pα)

Prove that R is an equivalence relationship on S.
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Notes to Instructors

PSP Content: Topics and Goals

Today’s undergraduate students are typically introduced to quotient groups only after meeting the con-
cepts of equivalence, normal subgroups and cosets. Not surprisingly, the historical record reveals a
different course of development. Although quotient groups implicitly appeared in Galois’ work on alge-
braic solvability in the 1830’s, that work itself pre-dated the development of an abstract group concept.
Even Cayley’s 1854 paper in which a definition of an abstract group first appeared was premature, and
went essentially ignored by mathematicians for decades. Permutation groups were extensively studied
during that time, however, with implicit uses of quotient groups naturally arising within it. Jordan, for
example, used the idea of congruence of group elements modulo a subgroup to produce a quotient group
structure [42, 41]. Thus, when Hölder gave what is now considered to be the first “modern” definition of
quotient groups in 1889, he was able to treat the concept as neither new nor difficult [38]. This Primary
Source Project (PSP) for a first course in abstract algebra draws on excerpts from that paper as a means
to introduce students to the concepts of a normal subgroup, a quotient group, the Fundamental Homo-
morphism Theorem and related elementary results. Excerpts from earlier works by Cauchy, Cayley and
Jordan in which precursors of these ideas appeared are also treated in three optional and independent
appendices.

Student Prerequisites

No prior familiarity with normal subgroups, quotient groups, or group homomorphisms is assumed in
this project. To the contrary, the project is designed to serve as students’ first introduction to these three
concepts and their related theory, following their study of more elementary group theory. It is assumed
that students are comfortable with the definitions and examples of groups and subgroups, along with
related proof techniques (e.g., for establishing closure under products) and basic results (e.g., Lagrange’s
Theorem for finite groups). Although the concept of a coset also naturally makes an appearance in this
project, the definition given in the project could serve as students’ first introduction to this concept.
In particular, it not necessary for students to have seen a proof of Lagrange’s Theorem via cosets and
equivalence classes; an alternate proof of this theorem that uses neither of these notions is included in
Appendix I of the project.

In addition to being fully self-contained with respect to the study of group homomorphisms, the
project’s treatment of the Fundamental Homomorphism Theorem in Section 6 requires no prior study of
group isomorphisms. It is, however, standard (and helpful!) for students enrolled in an abstract algebra
course to have previously met the idea of an isomorphism in a linear algebra course. Some tasks in
Section 4 of the project also include optional question phrasing for students who have previously studied
group isomorphisms (which some textbooks introduce prior to discussing homomorphisms), but again in
a way that does not require prior study of group isomorphisms. For students who have studied group
isomorphisms prior to this project, certain parts of Task 29 in Section 6 could be omitted; these are
identified as optional in that task.
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PSP Design, and Task Commentary
The full PSP is divided into six core sections of differing length, plus a project introduction and three
optional appendices. A sample implementation schedule is included later in these Notes. The following
description of the content of each section should assist instructors in determining how best to adapt that
recommended schedule to their own course goals and students’ needs. The estimated number of class
periods (based on a class length of 55 minutes) is given for each section. The actual number of class
periods spent on each section naturally depends on the instructor’s goals and on how the PSP is actually
implemented with students. Estimates on the high end of the range assume most PSP work is completed
by students working in small groups during class time.

• Introduction (0 days, out-of-class reading only)
This section includes some historical background related to quotient groups, brief biographical
information about Hölder, and an overview of the project design.

• Section 1: Hölder’s Definition of a Group (0.5 class days)
This short section briefly examines Hölder’s definition of a group, and prompts students to compare
it to the usual definition found in today’s textbooks. Hölder’s definition assumed only closure,
associativity and left- and right-cancellation. Since he worked strictly with finite groups, Hölder
did not need to explicitly assume the existence of an identity or of inverses. He did, however,
remark that both properties are implied by his definition, and Task 2 asks students to verify this
for finite groups. Since students will have studied the definition of a group prior to starting this
project, a brief whole-class discussion of this section should suffice, with Task 2 itself either skipped
altogether, or assigned solely as homework.

• Section 2: A Special Type of Subgroup (1–1.5 class days)
This section focuses on Hölder’s definition of a normal (or distinguished) subgroup, together with
alternate definitions and standard tests (e.g., only two left-cosets) for normality. The tasks in
this section prompt students to examine these different definitions within the context of specific
examples of normal subgroups. Tasks 3 and 4 are recommended as advance preparation work prior
to the first class discussion of this section. The remainder of the tasks in this section are sufficient
in number to allow for some to be completed in class via small-group work and others to be assigned
for individual write-ups as homework. These include a number of proof exercises that instructors
could choose from for presentation as class examples, after first asking student to draft their own
proof as advance class preparation prior to that presentation.

• Section 3: From ‘Factors of Composition’ to ‘Quotient Groups’ (0.5–1 days)
The purpose of this short section is to provide context for why Hölder himself was motivated to
define the concept of a quotient group; namely, to generalize Jordan’s previous result on group
‘factors of composition’ to a more abstract setting. The outcome of Hölder’s effort is today’s
Jordan-Hölder Theorem. Although this theorem is a deep result itself, Hölder’s discussion of it in
the this part of his paper was quite elementary. There are only two tasks in this section, which
instructors should encourage students not to overcomplicate! Task 9 examines the definition and
examples of a maximal normal subgroup, and is well-suited for completion as advance preparation
prior to class discussion. Task 10 prompts students to compute the factors of composition for
a specific group as a means to illustrate the content of Jordan’s theorem, and is best-suited for
completion in small groups during class.
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• Section 4: Quotient Groups and Normal Subgroups (1–1.5 days)
This section begins with Hölder’s initial argument — cast within a concrete language that views
‘cosets’ simply as horizontal rows of a certain table — that a normal subgroup allows us to multiply
cosets of that subgroup in such a way that these new elements (i.e., cosets) will themselves form a
group. His discussion of the role of normality in ensuring that the product of two cosets (i.e., rows of
the table) is well-defined is examined through the project narrative, as well as several student tasks
(Tasks 11–13). Other tasks in this section focus on basic properties of quotient group (Task 14)
or on specific examples of coset and quotient group computations (Tasks 15–17). The groundwork
accomplished in these specific examples is intended to set the stage for Hölder’s more abstract
discussion of the concept of coset multiplication and the quotient group concept that appears in
Section 5 of this project. As students first introduction to the notion of coset multiplication, these
tasks are thus especially recommended for in-class completion via small-group work. Task 18,
which calls for students to re-write a proof from Section 1 in the more abstract language of cosets,
is best-suited for individual write-up as a formal homework assignment.

• Section 5: The Importance of Being Normal (1–1.5 days)
This section continues with Hölder’s discussion of the quotient group as he moves from the concrete
language of horizontal rows in a table to the more abstract language of “partitioning the group
into classes of equivalent elements.” Tasks 20 and 21 ask students to examine what it means for
coset multiplication to be well-defined from this perspective. Following a formal (re-)statement of
the definition of quotient group and index (as part of the project narrative), the section closes with
three tasks (22–24) that ask students to apply elementary group theory theorems to the quotient
group itself. Instructors could choose to present one or more of these as a class example (after
asking students to draft their own solution as advance preparation for class), and assign the rest
for either in-class small-group work or individual write-up as homework.

• Section 6: The Fundamental Homomorphism Theorem (2.5–3 days)
This section employs Hölder’s comments on homomorphisms as a launching board for a series of
tasks that explore basic properties of homomorphisms (Tasks 26, 27, 29), as well as several concrete
examples (Tasks 28, 30, 31, 32). This latter set of tasks are especially important for students to
work through on their own or in small groups in order to set the stage for their recognition of the
Fundamental Homomorphism Theorem (FHT) and related preliminary results. These preliminary
results (Theorem 1 on page 23 and Theorem 2 on page 24) are examined in Tasks 33–35, with Task
34 again providing a specific example that is best-suited for small-group exploration.
The pièce de resistance — of this section and the entire project — comes in Hölder’s statement of
the Fundamental Homomorphism Theorem itself, which is then re-stated formally (in Theorem 3 on
page 25), via a diagram (Figure 1 on page 25) and schematically (Task 36 on page 25). Task 41 leads
students through a full formal proof of FHT, and can easily be completed by them individually (as
advance preparation work or as homework). Four other tasks in this section (Tasks 37–40) prompt
students to apply FHT either to specific groups or to proofs of related theorems. The section (and
project) then closes with some brief comments form Hölder’s about ‘splitting the group into two
factors’ using a normal subgroup and the corresponding factor group, and two final tasks (Tasks
42–43) that explore how this idea can be used in practice. Instructors could choose to present one
of the more theoretical tasks from this section (Tasks 37–40, 42–43) either in part or entirety as
class examples (after asking students to draft their own solution as advance preparation for class),
and assign the rest for either in-class small-group work or individual write-up as homework.
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• Appendix I: Cauchy’s Proof of Lagrange’s Theorem for Permutation Groups (Optional, 1–1.5 days)
In his initial description of the quotient group defined by a normal subgroup (Section 4), Hölder
remarked that the array scheme he was employing had already been used in Augustin Cauchy’s
proof of Lagrange’s Theorem in the particular case of a permutation group. This appendix presents
Cauchy’s original proof of that theorem and examines it within a particular example that illustrates
the concept of cosets and equivalency modulo a subgroup, but without using this more abstract
language. It is included with this project in part for the sake of completeness. However, instructors
who wish to provide students with a more concrete introduction to Lagrange’s Theorem could use
this appendix (or the full-length primary source project one which it is based, described in more
detail later in these Notes) as students’ first introduction to that theorem and its proof. Completion
of this Appendix, and especially Task I.2, could also be assigned as a substitute make-up assignment
for students with missing course work, or as an extra credit assignment for interested students.

• Appendix II: Cayley’s Classification of Groups of Small Order (Optional, 0.5–1 day)
This appendix features the conclusion of Cayley’s analysis of all groups of order 6, in which he
established that there are only two such groups. The Cayley tables that he produced as part of
this proof include a table for S3 in which the alternating subgroup A3 shows up in a fashion that
beautifully and surprisingly reveals both quotient group S3/A3 and the fact that S3/A3

∼= Z2! This
material is related to earlier tasks in the project (e.g., Task 8, 15, 18 & 28), and also provides
students with the Cayley table for S3 which can be conveniently used to complete computations
for Task 15 and Task 20.

• Appendix III: Camille Jordan, and Equivalence Modulo a Normal Subgroup (Optional, 1–2 days)
This appendix uses excerpts from a work by Camille Jordan (1838–1922) to examine properties
of the equivalence relationship of a group modulo a (normal) subgroup in more detail. Although
Hölder referenced this relationship in the excerpt in Section 4 of this project, he simply took this
relationship as well-known, due to the work which Jordan and others had done before him within the
context of permutation groups. Instructors who wish students to be familiar with this more abstract
approach to this material in more depth are thus advised to assign this Appendix in full or in part
as a natural companion to Section 5 of the project. The material in this section is self-contained
in the sense that it assumes no formal prior work with equivalence relationships on students’ part.

Suggestions for Classroom Implementation
To reap the full mathematical benefits offered by this PSP, students should be required to read assigned
sections in advance of any in-class discussion, or to work through reading excerpts together in small
groups in class. The author’s method of ensuring that advance reading takes place is to require student
completion of daily “Reading Guides” based on the assigned reading for the next class meeting; see pages
56–58 below for a sample guide. Reading Guides typically include “Classroom Preparation” exercises
(drawn from the PSP Tasks) for students to complete prior to arriving in class; they may also include
“Discussion Questions” that ask students only to read a given task and jot down some notes in preparation
for class discussion. On occasion, tasks are also assigned as follow-up to a previous in-class discussion.
In addition to supporting students’ advance preparation efforts, these guides provide helpful feedback to
the instructor about individual and whole-class understanding of the material. The author’s students
receive credit for completion of each Reading Guide (with no penalty for errors in solutions).

LATEXcode of the entire PSP is available from the author by request to facilitate preparation of reading
guides or ‘in-class task sheets’ based on tasks included in the project. The PSP itself can also be modified
by instructors as desired to better suit their goals for the course.
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Sample PSP Implementation (based on a 55-minute class period)

Day 1

• Advance Preparation Work – to be completed before class
Read pages 1–6 of the Introduction, Section 1 and Section 2, completing Tasks 1, 4 for class discussion
along the way, per the sample Reading Guide on pages 56–58 below. Since Task 3 should be a
straightforward application of the definition of subgroup by this point in the course, it could also be
including on the Reading Guide, or simply assigned as later homework.

• Class Work
– Whole-class and/or small-group discussion of the following:

∗ (Optional) Historical and mathematical ideas from the Introduction, if desired
∗ Hölder’s definition of a group in Section 1, including answers to Task 1.
∗ Assigned reading in Section 2, including comparison of answers to Task 4.

– Small-group work on Task 5.
– Time permitting, the instructor could preview the definition in Task 6, or have students begin

work on this task in small groups.

• Homework – to be due at a later date (e.g., one week after completion of the in-class work)
A complete formal write-up of some or all of Tasks 2, 3, and/or 5.
Note that parts of Task 2 are challenging, while Tasks 3 & 5 address essential course content.

Day 2

• Advance Preparation Work – to be completed before class

– In Section 2, prepare notes for class discussion of Tasks 6–8.
– In Section 3, read page 8–9, completing Task 9 for class discussion along the way.

• Class Work
– Brief whole-class discussion of terminology (i.e., ‘conjugates’) introduced in Task 6.
– Small-group work on Tasks 6 & 8.
– Brief whole-class discussion of Netto’s theorem in Task 8.
– Time permitting, small-group discussion of answers to Task 9, and initial work on Task 10.

• Homework – to be due at a later date (e.g., one week after completion of the in-class work)
A complete formal write-up of some or all of Tasks 6–8.
Task 6 in particular addresses essential course content.
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Day 3

• Advance Preparation Work – to be completed before class
In Section 4, read pages 9–12, completing Tasks 11, 12, 13 along the way.

• Class Work
– Whole-class discussion of the Hölder excerpt in the assigned reading.
– Small-group work on Tasks 14, 15, 16, & 17.

• Homework – to be due at a later date (e.g., one week after completion of the in-class work)
A complete formal write-up of student work on Task 18.

Day 4

• Advance Preparation Work – to be completed before class

– As follow-up to Day 3 class work, read the remainder of Section 3 (pp. 14–15).
– In Section 5, read pp. 15–18, completing Task 19 and 20 along the way.

Also prepare notes for discussion of at least one of Task 22–24 (to be chosen by the instructor).

• Class Work
– Summarizing whole-class discussion of the definition of quotient group, emphasizing the impor-

tance of using a normal subgroup, possibly to include a review of answer to Task 20.
∗ A review of the various methods for establishing normality encountered thus far in the

project would also be useful at this point; these appear in Definition 1, Definition 1’, Task
and Task 18.

∗ A presentation of the instructor’s solution to the task selected from Tasks 22–24 for advance
preparation by students is also recommended here as an example of how to apply elementary
group properties to the quotient group.

– Time permitting, small-group work could begin on the rest of Tasks 22–24 (e.g., those not
selected for instructor presentation as a class example).

• Homework – to be due at a later date (e.g., one week after completion of the in-class work)
A complete formal write-up of student work on the rest of Tasks 22-24 (e.g., those not selected for
instructor presentation as a class example).
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Optional Day on Appendix III

• Advance Preparation Work – to be completed before class
In Appendix III, read pages 37–41, completing Tasks III.1, III.2 and III.3 for class discussion along
the way.

• Class Work
– Whole-class or small-group discussion of definitions in assigned reading, to include answers to

Tasks III.2 and III.3.
– In small groups (with whole-class discussion as deemed appropriate):

∗ Read page 42 and discuss Tasks III.4 and III.5.
∗ Read page 43 and discuss Tasks III.6, III.7 and III.8.

• Follow-up Work (to be due at start of next class period): Complete reading of Appendix III
(pp. 43–44), including any of Tasks III.4–III.8 that were not completed in class.

• Homework – to be due at a later date (e.g., one week after completion of the in-class work)
A complete formal write-up of Tasks III.9 and III.10.

Day 5

• Advance Preparation Work – to be completed before class
In Section 6, read pages 19–20 and prepare notes for class discussion for Tasks 26, 27, 28, 29a.

• Class Work
– Whole-group discussion of the ideas in advance reading, to include Definition 3 and answers to

some/all of Tasks 26, 27, 28, 29a.
– Small-group work on some selection of the following: Task 29b, 29c, 30, 31, 32

• Homework – to be due at a later date (e.g., one week after completion of the in-class work
A complete formal write-up of some or all of Task 29c, 29d and 29e.
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Day 6

• Advance Preparation Work – to be completed before class
In Section 6, read pages 22–23, preparing preliminary notes for class discussion on the following along
the way: Tasks 33, 34a, 34b, 35

• Class Work
– Whole-group discussion of Theorems 1 and 2 from the reading, to include requested proofs in

Tasks 33 & 35 and answers to Tasks 34a & 34b.
– Small-group work on Tasks 34c & 34d
– Time permitting, the instructor could use the specific examples in Tasks 31, 32 & 34 to preview

the statement of the Fundamental Homomorphism Theorem

• Homework – to be due at a later date (e.g., one week after completion of the in-class work)
A complete formal write-up of student work on Tasks 33a & 34.

Day 7

• Advance Preparation Work – to be completed before class
In Section 6, read pages 24–27, completing Tasks 36 & 41 and preliminary notes for class discussion
on Task 37 & 42 along the way (and skipping all other tasks on these pages).

• Class Work
– Whole group discussion of the Fundamental Homomorphism Theorem, to include discussion of

answers to Tasks 36 & 37.
– Whole-class or small-group discussion of Task 42
– Time permitting, whole-class or small-group discussion of one of the following (to be selected

by instructor): Tasks 38, 39, 43

• Homework – to be due at a later date (e.g., one week after completion of the in-class work)
A complete formal write-up of some or all of the following (e.g., those not selected for instructor
presentation as a class example): Tasks 39, 40, 42, 43.
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Connections to other Primary Source Projects (PSPs)

The author of the current project has developed and taught with the following additional PSPs addressing
core topics from the standard curriculum of a junior-level abstract algebra course. Each of these projects has
been successfully site-tested at several institutions as a replacement for a textbook, either for a portion of the
course, or for the course in its entirety. Further information about structuring an entire Abstract Algebra
course around PSPs in this collection is available from the author.

• Abstract Awakenings in Group Theory:
Early group theory in the works of Lagrange, Cauchy, and Cayley42

The centerpiece of this extended PSP is the 1854 inaugural paper on abstract group, Arthur Cayley’s
On the theory of groups, as depending on the symbolic equation θn = 1 [Cayley, 1854]. In keeping
with the historical record, and to provide concrete examples on which to base their abstraction of the
group concept, Section 1 of the project begins with the material from Lagrange in the PSP The Roots
of Early Group Theory in the Works of Lagrange (described below). Section 2 then employs selections
from writings by Cauchy in which a more general theory of permutations and symmetric groups was
developed independently of the theory of equations, and today’s current notation for permutations
was first introduced. Section 2 also includes Cauchy’s statement and proof of Lagrange’s Theorem for
Symmetric Groups,both of which are easily adapted to the more general case of any finite group (as
is illustrated in Appendix II of the current PSP, which contains this same material). The Abstract
Awakenings project then turns to a detailed reading of Cayley’s complete paper in Sections 3 and 4,
paying careful attention to the similarities between the theory of permutation groups as it was developed
by Cauchy and the modern notion of an abstract group as it was unveiled by Cayley.

Absolutely no familiarity with group theory is assumed in this PSP! Instead, it was explicitly designed
to serve as students’ very first encounter with group-related ideas. Completion of the entire project
takes approximately 10 weeks, but (un)covers the vast majority of the elementary group theory typically
studied in a junior level abstract algebra course, including: roots of unity, permutations, definition
and elementary properties of group (including results related to the order of group elements), abelian
groups, cyclic groups, symmetric groups, alternating groups, Cayley tables, Lagrange’s Theorem, group
isomorphisms, classification of groups of small order, and direct products. The concept of cosets is also
introduced in the main body of the project, and further developed in an appendix that also states the
definitions of normal subgroup and factor group; this material is, however, more fully and effectively
developed in the current PSP.

42To obtain the most recent version of Abstract Awakenings in Group Theory, contact the author at
janet.barnett@csupueblo.edu, or visit www.cs.nmsu.edu/historical-projects/projects.php for an earlier version. Within
that earlier version, all resolvent equation examples are instead presented as tasks for students to complete themselves. An
alternative version of the PSP The Roots of Early Group Theory in the Works of Lagrange which adopts that more open-
ended/inquiry-based approach is also available upon request from the author. This PSP was initially developed under NSF grant
DUE-0715392l; additional testing has also been supported by funding from the TRIUMPHS NSF grant DUE-1523494.
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• The Roots of Early Group Theory in the Works of Lagrange43

This PSP draws on works by one of the early precursors of abstract group, French mathematician J. L.
Lagrange (1736-1813). An important figure in the development of group theory, Lagrange made the first
real advance in the problem of solving polynomial equations by radicals since the work of Cardano and
his sixteenth century contemporaries. In particular, Lagrange was the first to suggest the existence of
a relation between permutations and the solution of equations by radicals, a suggestion later exploited
by Abel and Galois. In addition to the important group-theoretic concept of a permutation, the project
employs excerpts from Lagrange’s study of roots of unity to develop the concept of a finite cyclic group.
Lagrange’s description of his quest for a general method of algebraically solving all polynomial equations
is also a model of mathematical research that make him a master well worth reading by today’s students
of mathematics.
The design of the project is based on the first section of the extended PSP Abstract Awakenings in Group
Theory, the content of which is described above. Instructors who begin their study of group theory with
the PSP The Roots of Early Group Theory in the Works of Lagrange and then wish to continue with
the pedagogy of primary source projects throughout their students’ study of group theory could easily
shift over to the PSP Abstract Awakenings of Algebra. For those who prefer a less extended use of this
instructional practice, the PSP The Roots of Early Group Theory in the Works of Lagrange could also be
used in conjunction with a more traditional textbook. In either case, this PSP will be more effective as
an exploratory introduction to the group concept if it is used before students have studied the concepts
of cyclic groups and permutations / permutations groups in much, if any, detail.

• Richard Dedekind and the Creation of an Ideal: Early Developments in Ring Theory44

This PSP draws on the 1877 version of Dedekind’s theory of ideals as a means to introduce students
to the elementary theory of rings and ideals. Characteristics of Dedekind’s work that make it an
excellent vehicle for students in a first course on abstract algebra include his emphasis on abstraction,
his continual quest for generality and his careful methodology. The 1877 version of his ideal theory (the
third of four versions he developed in all) is an especially good choice for students to read, due to the
care Dedekind devoted therein to motivating why ideals are of interest to mathematicians by way of
examples from number theory that are readily accessible to students at this level. In this regard, unique
prime factorization (and the failure thereof in certain integral domains) plays a central role. Other
specific topics developed in the PSP include the following: rings, integral domains, fields, zero divisors,
ideals, principal ideals, prime ideals, maximal ideals.
No prior familiarity with ring theory is assumed. The project has also been successfully used with
students who had not yet studied group theory. For those who have not yet studied group theory (or
those who have forgotten it!), basic definitions and results about identities, inverses and subgroups are
fully stated when they are first used within the PSP (with the minor exception of Lagrange’s Theorem
for Finite Groups which is needed for one part of one task).

43To obtain the most recent version of The Roots of Early Group Theory in the Works of Lagrange, visit
http://webpages.ursinus.edu/nscoville/studentprojects.html. An alternative version which adopts a more open-
ended/inquiry-based approach in which all resolvent equation examples are presented as tasks for students to complete themselves
is also available upon request from the author at janet.barnett@csupueblo.edu. Development and testing of this PSP was
supported by funding from the TRIUMPHS NSF grant DUE-1523494.

44To obtain the most recent version of Richard Dedekind and the Creation of an Ideal: Early Developments in Ring Theory,
visit http://webpages.ursinus.edu/nscoville/studentprojects.html. Development and testing of this PSP was supported
by funding from the TRIUMPHS NSF grant DUE-1523494.
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SAMPLE READING GUIDE - For Day 1

Background Information: The goals of the reading and tasks assigned in this guide were to prepare students
for a whole-class discussion of the definition and examples of a normal subgroup, and small-group work on
Task 6.

**********************************************************************************************

Reading Assignment Otto Hölder’s Formal Christening of the Quotient Group Concept - pages 1–5

1. Read the Introduction, pp. 1–2. Jot down any comments or questions you have here.

2. In Section 1, read pages 2–3.

Then complete Task 1 (page 2) in preparation for class discussion here:

Task 1 Compare the definition of a group given by Hölder to the definition typically found in
today’s textbook. How are these definitions the same? How are they different?

3. SKIP TASK 2, and go on to read page 4 in Section 3.

Write at least one question or comment about the mathematical ideas in the Hölder excerpt.

4. Write out a sketch for the proof requested in Task 3 (page 4).
Do this on a separate sheet, and attach your work to this study guide.

Questions or comments?

This reading guide is continued on the next page.
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5. Complete Task 4 from page 5.

Task 4 Consider the specific group G = S3, and denote the identity permutation by e.

(a) Let H = A3 = { e , (1, 2, 3) , (1, 3, 2) }.
Find the transformed subgroup a−1Ha for every element a ∈ S3.
(A partial computation for a = (1, 2) is given below.)

a a−1Ha

e

(1, 2) { (1, 2)e(1, 2) , (1, 2)(1, 2, 3)(1, 2) , (1, 2)(1, 3, 2)(1, 2) } =

(1, 3)

(2, 3)

(1, 2, 3)

(1, 3, 2)

What do you notice about the transformed subgroups in this case?

This reading guide is continued on the next page.
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Task 4 - Continued

RECALL: G = S3, where e denotes the identity permutation.

(b) Now let K = ⟨(2, 3)⟩ = { e , (2, 3)}.
Find the transformed subgroup a−1Ka for every element a ∈ S3.

a a−1Ka

e

(1, 2)

(1, 3)

(2, 3)

(1, 2, 3)

(1, 3, 2)

What do you notice about the transformed subgroups in this case?

This reading guide is continued on the next page.
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6. Read the rest of page 5, through to the top of page 6

• Write down Definition 1 for a normal subgroup here.

• Write down Definition 1′ for a normal subgroup here.

• Questions or comments?

7. Also read — but do not complete! — Task 6.

• What does it mean for a subgroup to be closed under conjugates?

• Write down the theorem which Task 6 asks us to prove.

• Questions or comments?
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