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Abstract

We explore this two photon assisted transition through computational and nu-

merical analysis of possible energy levels. We calculate the matrix elements of the

energy transition in detail discussing constants and the quantum mechanical possi-

bilities of energy exchanges in these systems.

The goal is to better understand the energy exchange, so that moving forward

we can control it. This paper covers the theoretical ends to controlling the energy

transition by the way of two photon assisted transitions. The energy transitions

take place between a dipole-dipole interaction, and a microwave photon.
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Chapter 1

Introduction

Quantum mechanics is the fundamental theory of nature and is particularly nec-

essary at atomic and subatomic scales. Some Quantum mechanical systems for

example solid state systems are complex and difficult to study. One method to

study such quantum mechanical systems is quantum analog modeling. Quantum

analog modeling uses simple quantum systems that can be controlled and easily

constructed, and applying the results to more complex quantum systems [2]. The

control of quantum mechanical systems extends into quantum computing, systems

of atoms can be used to turn long range interactions on and off [3]. By using a sys-

tem of quai-one-dimensional atoms it is possible to control the statistical coherence

through electron wave packets [4, 5]. It is also possible to control highly excited

electrons through genetic algorithms [6]. These levels of control are motivation to

further study controlling quantum mechanical systems.

Quantum mechanical systems can be studied in numerous branches of physics,

but we focus on studying these system on the atomic level. In our experiments we

trap the atoms to study them. A trap is used to cool atoms to micro-kelvin, or

ultra-cold, temperatures. Since the atoms are ultra-cold they move very slowly or

close to not at all on experimental timescales of 10s of µs. Slower moving atoms

means there will be fewer collisions allowing the study of long range interactions.

1
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Since they are practically frozen they are easy to probe and control with lasers.

There are various types of atomic traps, however the one used in experiments

in this paper used a magneto-optical trap, or MOT. The MOT uses a pair of anti-

Helmholtz coils to create a magnetic field around a vacuum which houses the atoms

[7]. The atoms are cooled to ultra-cold temperatures using three propagating lasers,

these lasers force the atoms to stay in the intersection of the beams.

Controlling quantum interactions has long been a goal in the field of atomic

physics. To control the system means there are “knobs”, “switches”, or “buttons”

that can be modified to study a system in numerous ways. One method is to adjust

the electric field strength to shift the energy levels. One device can not be con-

trolled with the control of a single parameter. To create simulations that accurately

describe the system and aid in the understanding of more complex systems we need

multiple knobs, switches, and buttons.

The system in this paper has already achieved one “knob” from previous work [1].

This previous work studied the angular dependence of the system. This angular

dependence was controlled using the orientation of the electric field. We were able

to conclude that the system did indeed depend on the orientation of the atoms in

the system, and now provides the means for controlling the system. Just by literally

using a knob, we are now able to use the electric field orientation and strength to

control the system. Prior to this the knobs have been an idea of controlling a

parameter theoretically. This knob that controls the electric field is actually a knob

and we can turn it to increase the electric field and turn it the other way to decrease

the electric field. We are also able to use a device to change the direction of the

electric field. The process will be discussed more in section (1.5). It is important

to note that though these ideas at the moment are focused on studying theoretical
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knobs, buttons, and switches, but are able to be constructed to be used in both

simulations and experiments.

The goal now is to add another knob, switch, or button to the system to help

control the system to a higher degree. Moving forward we are able to look at

previous works in configuration interaction models that study coupled states [8,

9]. Currently we are studying the two photon transitions assisted by microwave

radiation on the atomic level Using microwave radiation allows us to flip a switch

and have the interactions take place, or not take place. This idea is known as

a two photon interaction. This interaction does not occur naturally without the

microwave radiation. This means we are able to control the interaction using a

switch to stop the microwave radiation from entering the system, and at the same

time turn it on when needed. This level of control is what is needed to better

understand the quantum mechanical system.

1.1 Review of Notation

There are many atomic levels including but not limited to an s-state, p-state, and

d-state. These states have specific quantum numbers that describe their properties.

The principle quantum number n, refers to the energy level of the state, in Fig. 1.3

the n values are clearly labeled for the given states being studied. There is also the

angular quantum number ` specifies the shape of the orbital. Lastly the magnetic

quantum number m specifies the orientation in space [10]. where j is the total

angular quantum number, ` corresponds to the rotational angular momentum s = 1,

d = 2, and f = 3, and mj, the magnetic quantum number, is −j,−j + 1/2, ..., j −

1/2, j.
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1.2 Rydberg Atoms

The atoms we utilize in the system are known as Rydberg atoms. The Rydberg

atoms are created using a group I element. Group I elements have a single valence

electron. The valence electron is loosely bound because it is in an energy level by

itself. Since the electron is loosely bound we are able to more directly add energy

to that level and excite the the electron to a Rydberg state. To excite this electron

we use a laser to provide it with energy to transition to a significantly higher energy

level than it would be at naturally.

After the atoms are trapped in the MOT, a laser is used to excite the valence

electron of the atoms to a Rydberg state. This Rydberg state is excited to a much

higher energy level than the rest of the electrons in the system. In Fig. 1.2 is a

simple model of an atom that has transitioned into a Rydberg atom. In this Bohr

model the hydrogen atom has a single proton with charge +e , and an electron with

charge −e . The Bohr model of hydrogen can be compared to a Rydberg atom,

with the Rydberg atom there is a positive core with charge +e and a single electron

with charge −e that has been separated a large distance from the core.

There are advantages to using a system that involves Rydberg atoms. A Rydberg

atom is simple enough that it can be modeled like Bohr’s hydrogen model, but

complex enough interesting things happen on the atomic scale. The electron, after

being excited to a Rydberg state, is easily affected by the electric field and can

now be finely perturbed. The atom itself is still neutral and thus interacts very

little with the environment. These properties make Rydberg atoms attractive for

studying quantum mechanical systems.
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Hydrogen Atom

proton with +1 charge

electron with -1 charge

Rydberg Atom

electron with -1 charge

core with +1 charge

Figure 1.1: A comparison between the Bohr model of a hydrogen atom, and a
Rydberg Atom. On the left is the model of the hydrogen atom with a proton
being orbited by electron. On the right is a model of an atom that has had its’
valence electron excited into a Rydberg state. This Rydberg atom has a positive
core with charge +e, and an electron.
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1.3 Stark Effect

Rydberg atoms are highly sensitive to electric fields and thus thus their energy levels

will be strongly perturbed by the Stark effect. The Stark effect causes the energy

levels of the Rydberg electron to change as the applied electric field varies. This

causes one state to bend take contributions from surrounding states. When the

electric field is zero, the states are true to their labels, and take no contributions

from neighboring states.

In Fig.1.3 there are two labeled energy states, 39p3/2 and 39s1/2. On the vertical

axis is the energy of the states, the closer to zero we get the higher the energy level,

and the further from zero the more ionized the state is. On the horizontal axis is

the strength of the electric field. There is a noticeable bending of the 39p3/2 energy

as the electric field increases.

This bending is the state taking on some contribution from the n = 36 state

labeled in Fig. 1.3 and becoming a superposition of the two states.The bending that

is taking place will factor in to calculating the matrix elements for our system. For

example, consider an electron 75% in state A, and 25% in state B, then there are

significant contributions from the energy levels of both states. We would have to

say this electron is in a superposition of A and B and thus the calculation for the

matrix element will have to account for this.

1.4 Dipole-Dipole Interactions

Consider two Rydberg atoms separated by a distance R as shown in Fig. 1.2. Ryd-

berg atoms possess large dipole moments, making interactions between them dipole-

dipole interactions. Call the first atom A, and the second atom B. Fig. 1.2 the Ryd-
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Figure 1.2: Model of dipoles with each black line being a dipole with an orien-
tation at angle θ, separated by a distance R. The electric field, ~E in this case is
aligned with the same orientation as the dipoles and is marked in green.

berg electron of atom A is dropping down from the initial state and thus emitting a

photon with a specific energy equal to the difference of the initial and lower energy

levels. The Rydberg electron of atom B absorbs the Rydberg electron of atom A’s

photon and thus gains enough energy to transition to a new higher energy state.

When this dipole-dipole interaction takes place it is between two separate Ry-

dberg atoms. Each of the Rydberg atoms is separated by a distance R as seen in

Fig. 1.2. The electric field is present in the interaction and in Fig. 1.2 is aligned

with the orientation of the dipoles which are at an angle θ. This dipole interaction

is

V (r) =
µ1·µ2 − 3(µ1· R̂)(µ2· R̂)

R3
, (1.1)

where R is the separation of the atoms, and µ1, µ2 are the matrix elements con-

necting the initial and final states of each atom [1].

With the dipole-dipole interaction it is possible for two different electrons of

different energy levels to switch energy levels. It is also possible for two Rydberg

electrons to start in the same energy level and for one to emit a photon transitioning

to a lower energy level, and for the other to absorb the photon transitioning to a

higher energy level. This can happen in two different ways. The first being that

the energy the first electron emits, is the right amount for the second electron to
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absorb and transition to a higher level. This is a resonant dipole-dipole interaction.

The other possibility is that the energy the first Rydberg electron emits is either

too little or too much energy for the second Rydberg electron to land in an energy

level, and thus requires extra energy. This is known as a non-resonant dipole-dipole

interaction.

1.5 Anisotropy of the Dipole-Dipole Interaction

Our previous worked studied on the angular dependence of the energy exchange

among Rydberg atoms [1]. In Fig. 1.2 there is an angle θ that shows the orien-

tation of the dipole. Using a resonant interaction as seen in Fig. 1.3, the angular

dependence of the system can be studied more closely. The system can be aligned

at different values of θ by changing the direction of the electric field. We calculated

the dipole dipole coupling including its dependence on the angle θ. We can use

the matrix elements we calculated to create simulations of the exchange at different

directions of the electric field.

In the simulations to study the angular dependence a disc of atoms was config-

ured with a small group of p atoms surrounded by s atoms as seen in Fig. 1.4. The

more red indicates more p atoms, and the blue indicates s atoms. In the simulation

it is possible to change the number of both p and s atoms, as well as change the

geometry of the atoms. By changing the ratio of atoms the system can behave

differently. The goal of the simulation was to determine if the spread of the p atoms

over time depended on the orientation of their dipoles.

From Fig. 1.4 we can see that the work resulted in a visible angular dependence.

That is the p atoms spread differently depending on the orientation of the electric

field. In Fig. 1.4 (a) the orientation of the electric field is in the x direction, relative
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Figure 1.3: A Stark map showing a dipole-dipole interaction s+p→ p+s. This
energy exchange is always resonant, meaning that energy that one of the Rydberg
electrons emits, is enough for the other to absorb and swap energy levels.
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Figure 1.4: The expansion of p character form a centralized disc of atoms. The
more red the area the more p probability. The orientation of the geometry it
given in the top left corner of the figure. Time progresses downward vertically.
(a) The expansion when an electric field E0x̂ is applied. (b) The expansion when
an electric field E0ŷ is applied. (c) The expansion when an electric field E0ẑ is
applied. In (a) the diffusion of p character is faster in the y direction, while in
(b) it is faster in the x direction. Reproduced from [1].
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to the axis labeled in the figure. As time increases the p atoms spread is more

apparent in the y direction. In Fig. 1.4 (b) the electric field is in the y direction. As

time progresses the p atoms are spreading more predominately in the x direction.

A reference for an even distribution can be seen in Fig. 1.4 (c), where the electric

field is being applied in the z direction. Here the spread is evenly distributed on

the disc, because we can imagine the disc is a two-dimensional object and instead

of spreading off of the disc it is spreading evenly in both x, and y directions.

The results of these simulations show the system can be altered by altering the

angle θ between the dipoles. Before the simulation the only control in the system

was the geometry and amount of atoms. This angular dependence now provides a

way for the system to be controlled, and gives us a “knob” to turn and adjust the

spread of energy in the system.

1.6 Radiatively Assisted Energy Exchange

(we want this interaction, because we can use this fact to solve, an opportunity we

are taking advantage of)

The goal of this paper is to engineer an interaction that has insufficient energy

from a dipole-dipole interaction and provide it with the energy it needs to happen.

To do this we need to focus on interactions that can not take place without added

microwave radiation. Consider an interaction like the one shown in Fig. 1.5, recall

that a dipole-dipole interaction occurs when one Rydberg electron emits a photon,

and another Rydberg electron absorbs that photon, but there is the possibility that

this interaction does not happen because the energy the Rydberg electron absorbs

is too much, or too little energy to reach an energy level. However we can solve

this by adding the microwave radiation, in this case depicted as the blue line in the
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Initial

Lower

K

Upper

Figure 1.5: A simple model of a possible interaction, the red lines represent
atoms undergoing the dipole-dipole interaction while the blue represents a mi-
crowave photon. The lines represent the initial, lower, upper, and intermediate
energy level K.

figure. We use microwave photons because they are approximately the same scale

we need for studying atomic physics.

Now that more than one photon is being absorbed we must calculate new matrix

elements to study the system. Quantum mechanics says that every transition that

can happen will have a probability amplitude, so to solve for the matrix elements we

must sum over all possible cases. One of these sums has to account for the fact that

the dipole-dipole interaction can happen first followed by the microwave photon,

or that the microwave photon affects the system first followed by the dipole-dipole

interaction.

The goal of studying radiatively assisted energy transitions is to add another

knob, switch, or button to our system. The system will be able to have different

interactions with larger gaps in the energy levels with the flip of a switch. Once the

matrix elements are calculated, the simulations can be created. Using simulations

allows for guidance in experimental work. If we can properly calculate the matrix

elements and create significant simulations than it gives the experimental work a

starting point. Once the simulations work preliminary data can be taken. This data
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can be used to guide our experiments, for example we can use the simulations to

find which states more probable transitions. We will also be able to learn how much

microwave radiation is needed at specific strengths of the electric field. Overall the

calculations of these two photon transitions make it possible to create simulations

with parameters we can control to collect preliminary data for specific experiments.





Chapter 2

Theory

To better understand the process of calculating matrix elements of possible energy

exchanges we will walk through multiple examples including finding Clebsch-Gordan

Coefficients, and calculating matrix elements for a two photon transition. The

system is a quantum mechanical system, and thus needs to account for all the

possibilities. For a two photon transition it is possible for the Rydberg electron to

pass through a virtual intermediate state that has many substates. If this is the case

it is required to sum over all of these states and account for them in the integral.

To show the calculation for one of the possible states, we will look at the case of

an atom transitioning from the 42d5/2 state to the 44p5/2 state. This example will

give us an opportunity to look at both d and p states with different j values. We will

be using bra-ket notation with the notation, 〈jfinal, `final,mj−final|jinitial, `initial,mj−initial〉.

For this problem we will be using mj = 1/2. For the angular interaction we use the

operator er. However to get a numerical value for examination we must change j

and mj to ` and m` respectively, along with introducing an ms term. To do this we

need to change basis, and find the Clebsch-Gordan coefficients for the givens states.

To change a bases we need to understand the relationship between the two different

states and how they are different [10].

The states we start with can be written as a superposition or combination of

15
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the state we wish to change to. This means one of our starting states will be-

come a superposition state in our new basis. We start with the uncoupled ba-

sis of |j1m1; j2,m2;M〉 and move to a coupled basis where the eigenfunctions are

|j1, j2, J,M〉 [11].

2.1 Matrix Elements for a Photon Transition

To create simulations it is required to solve for the matrix elements of a photon

transition. There are two cases to consider, the first being a single photon transition,

and the second being a two photon transition. The single photon transition is a

resonant interaction where one photon is able to allow the transition of two Rydberg

electrons. A two photon transition is the non-resonant interaction, where a second

photon is needed for one of the transitions.

2.1.1 Matrix Elements for a Single Photon Transition

A single photon transition is a resonant interaction. This means that one Rydberg

electron is able to transition to a lower energy level emitting a photon of a certain

energy, which we can call ωd. Another Rydberg electron is able to absorb the

emitted photon transition to a higher energy level, ωd energy.

Part of the matrix element can be described as,

Mi` = 〈lower|r|initial〉 . (2.1)

This matrix element describes the Rydberg electron that is emitting a photon,

starting in the initial state i, and transitioning to the lower state `. The other half
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of the full matrix element for the dipole-diple interaction is

Mif = 〈final|r|initial〉 . (2.2)

Where i is the initial state and f is the final state. This is the case where a photon

is absorbed by the Rydberg electron and transitions to a higher energy state.

It is important to note that the energy from the transition from initial to lower

is the same as the energy of the transition from initial to final. In our calculations

we control the initial and lower states, calculate the energy, ωd, for the interaction,

and apply that number to the initial state. This will tell us what the final state of

the transition is. In other words it is ωd higher in energy than the initial state.

2.2 Clebsch-Gordan Coefficients

Clebsch-Gordan coefficients arise from the coupling of angular momentum states.

Classically when we combine vectors the output is another vector, but when we

combine angular momentum vectors we create a new net angular momentum. With

our example for this problem we have an atom in a d-state transitioning to a p-state.

In Fig. 2.1 we see a small section of the Clebsch-Gordan table focusing on coupling

` = 2 to sping 1
2

section. In our example , our initial state has l = 2 and spin-1/2

electron.

The energy level for this example is 42d5/2 and mj = +1
2

so we look at the red

column,  j

mj

⇒
5/2

1/2

 . (2.3)

Using this method will factor our state into C1 〈`,m`1,ms1|+C2 〈`,m`2,ms2|. These
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coefficients are found in the table. The variables m`1 and ms1 represent the the two

top numbers in the green box in Fig. 2.1, +1, and −1/2 respectively. To the right

of these numbers is a blue box the top blue box is the Clebsch-Gordan coefficient

that arrives from this basis change, giving us C1 =
√

2/5. All Clebsch-Gordan

coefficients are the square root of the value given on the table. Looking at the lower

green and blue boxes we get m`2 and ms2 are 0 and +1/2 respectively. To the right

of this set is another Clebsch-Gordan coefficient, C2 =
√

3/5. We started with

〈j = 5/2, ` = 2,mj = 1/2| and changed our basis to

√
2

5
|l = 2,m`1 = 1,ms1 = −1/2〉+

√
3

5
|` = 2,ml2 = 0,ms2 = +1/2〉 . (2.4)

For simplicity we can drop the quantum number labels ` m`, and mj and write

Eq. 2.4 as, √
2

5
|2, 1,−1/2〉+

√
3

5
|2, 0,+1/2〉 (2.5)

The initial basis has to be changed as well. We start with our sate as |j = 3/2, ` = 1,mj = +1/2〉.

Proceeding as in Eq. (2.4)-Eq. (2.5) we look at Fig. 2.2 which is a section of the

table 1× 1/2 which refers to ` = 1 and the spin being 1/2. This time want to look

at the column  3/2

+1/2

 , (2.6)

outlined in red. From here we look at the two new states in green where m`1 = 1,

ms1 = −1/2, m`2 = 0, and ms2 = +1/2. The blue box now gives us Clebsch-Gordan
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Figure 2.1: A small section of a Clebsch-Gordan table of coefficients focusing
on coupling ` = 2 and spin 1

2 . The red box indicates the relevant state, the
top green box represents the first part of the basis change where the first two
numbers are the new ml, and ms respectively. The bottom green box represents
the other part of the state from the basis change. The blue boxes represent the
Clebsch-Gordan coefficients that correspond to each new state. In this image we
are using a j = 5

2 , mj = +1
2 .

3/2
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1×

Figure 2.2: A small section of a Clebsch-Gordan table of coeffecients focusing
on coupling ` = 1 and spin 1

2 . The red box indicates the relevant state, the
top green box represents the first part of the basis change where the first two
numbers are the new m`, and ms respectively. The bottom green box represents
the other part of the state from the basis change. The blue boxes represent the
Clebsch-Gordan coefficients that correspond to each new state.In this image we
are using a j = 3/2, mj = +1/2.
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coefficients C1 =
√

1/3, and C2 =
√

2/3. Now our final state becomes

√
1/2 〈` = 1,m`1 = 1,ms2 = −1/2|+

√
2/3 〈` = 1,ml2 = 0,ms2 = +1/2| (2.7)

for simplicity we drop the variables, and can write Eq. 2.7 as,

√
1/3 〈1, 1,−1/2|+

√
2/3 〈1, 0,+1/2| (2.8)

By combining both our new states we get,

(√
1

3
〈1, 1,−1/2|+

√
2

3
〈1, 0, 1/2|

)
(er)

(√
2

5
|2, 1,−1/2〉+

√
3

5
|2, 0, 1/2〉

)
(2.9)

This product now has to be multipled out, to identify each term better we will break

it up into parts.

√
1

3
〈1, 1,−1/2| (er)

√
2

5
|2, 1,−1/2〉+

√
1

3
〈1, 1,−1/2| (er)

√
3

5
|2, 0, 1/2〉+√

2

3
〈1, 0, 1/2| (er)

√
2

5
|2, 1,−1/2〉+

√
2

3
〈1, 0, 1/2| (er)

√
3

5
|2, 0, 1/2〉 (2.10)

Two of the terms, the second and third, have differing m` values, this is not

possible by selection rules and thus are equal to zero [12]. Moving forward we need

to integrate the terms. The terms can be broken into a radial and angular integral,

e

∫ 2π

0

∫ π

0

Y`f ,mf
Y`i,mi

dΩ

∫ ∞
0

R42d5/2R44p3/2(r)r
2dr. (2.11)

The first set of integrals are spherical harmonics that cover the angular part of the

integration, the second integral is the radial part of the equation. The integration
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of the angular part yields, √
`2 −m2

`

(2`+ 1)(2`− 1)
(2.12)

[13]. This equation uses the initial ` value for the interaction, in our case that

would give us ` = 2, and m` = 1. We can evaluate both angular terms. For the

first surviving case we get,

√
`2 −m2

`

(2`+ 1)(2`− 1)
=

√
3

15
(2.13)

and for the later, √
`2 −m2

`

(2`+ 1)(2`− 1)
=

√
4

15
. (2.14)

This leaves us with the radial part, this calculation is done using computational

software. To calculate this numerical term we use Numerov’s method [14]. To

calculate Numerov’s method for these terms precisely we use the super computer

to account for the contribution from other states. As discussed in section 1.3, the

states in an electric field are the superposition of the state at zero energy, and the

state that it is bending towards on the Stark map as pictured in Fig. 1.3.

Using ξ as the numerical part and pulling out the Clebsch-Gordan coefficients

we arrive at, √
1

3

√
2

5

√
3

15
ξ +

√
2

3

√
3

5

√
4

15
ξ (2.15)

To calculate ξ we look at using computational methods on the super computer.

This is because the radial integration in Eq. (2.11) accounts for the states that un-

dergo the bending from the detuning and Stark effect. This means the superposition

isn’t only a number but rather a sum of integrals.
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2.3 Matrix Elements for a Two Photon transition

Two photon transitions are non-resonant interactions as seen in Fig.1.5. This reac-

tion can happen two different ways. The first being that the first Rydberg electron

emits a photon transitioning to a lower energy level ` with energy ωd, and the second

Rydberg electron absorbs that photon, then the microwave photon provides energy

to the system. Here the electron absorbs the same energy as emitted from the first

Rydberg electron however due to the non-resonant nature of the interaction, the

state passes through a virtual intermediate level k. The virtual level could have

multiple substates, and thus has to be summed over. We can call these energies

ωki, the energy from the initial state i to one of the intermediate states k. Another

possibility is when the microwave provides energy to the system first, allowing one

of the Rydberg electrons to absorb the photon. That interaction is then followed

by the dipole dipole interaction where the Rydberg electron that reieved the pho-

ton from the radiation recieves another photon from the dipole-dipole interaction.

Both of these processes are possible in quantum mechanics and thus both have to

be accounted for.

To calculate the matrix elements we write each transition as a sum over all

possible interactions. The first Rydberg electron starts in the initial state and

transitions to a lower state `, which can be written as Mi`. The other possible

transition is between the initial i, and intermediate k levels, and can happen either

by dipole-dipole or microwave radiation and is written as Mik. The last transition to

take place again happens either between the dipole-dipole interaction or microwave

radiation and can be written as Mkf .

To create an equation to calculate the two photon transition, we use the terms
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for each transition. The summation of these elements yields.

1

R3

[
Mi`Σ

Mik ~e1Mkf ~e2
ωki − ωd

+Mi`Σ
Mik ~e1Mkf ~e2
ωki − ωµ

]
. (2.16)

Regardless of the interaction we choose Mi`. The electron that emits a photon will

always be consistent because when doing the experiments and simulations we will

choose which energy level the electron is transitioning to. Since we choose the lower

energy level the photon the electron emits, transitioning to the lower energy level,

will be known and constant thus we do not have to sum over it allowing us to factor

it out of the equation,

1

R3
Mi`

[
Σ
Mik ~e1Mkf ~e2
ωki − ωd

+ Σ
Mik ~e1Mkf ~e2
ωki − ωµ

]
. (2.17)

In this equation, the M factors represent the matrix elements and their respective

transitions, while ωd is the energy gap between the initial and lower levels, ωki is

the series of gaps between the initial level and sum of virtual intermediate levels,

and ωkf is the sum of possible energy levels from the virtual intermediate state k

and the final state.

2.3.1 Calculations of ω

The ω values that arise through these transitions are differences between energy

levels. Each ω value represents a different energy gap between the states. In Fig. 3.2,

ωd is the energy give by

ωd = Ei − E`. (2.18)
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Where Ei is the energy of the initial state and E` is the energy of the lower state.

Another ω term we can calculate is ωki, the energy between the initial state i,

and the virtual intermediate state k. This calculation will be for a chosen value

depending on ωd, but can be described as

ωki = Ek − Ei. (2.19)

It is important to note that the k state can have multiple substates, and thus ωki

can have multiple values. The last ω term in Eq. (2.17) is ωµ, the last remaining

energy needed to reach the final state f . Assuming the Dipole-dipole itneraction

happens first we know the energy from the initial level to the lower level is ωd we

also know the second electron in the initial states rises omegad in energy so we can

write our value as

ωµ = Ef − 2ωd. (2.20)
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Results

Calculating examples to test theoretical work is always necessary. In the following

chapter we test our method against previous work [8, 9], and complete an exam-

ple of a system where ωd ≈ ωµ. This means that the photon absorbed from the

dipole-dipole interaction is almost the same energy as the microwave photon being

introduced to the system.

In the work previously completed by the Gallagher group at the University

of Virginia who experimentally and theoretically calculated a coupling using a

configuration-interaction model. This model is a different way to study the quan-

tum mechanical system [9]. There studies focus on a series of coupled states that are

always separated by certain energy gaps. These gaps are chosen by first selecting

the initial state to be at an energy level nd5/2, making their coupled initial state

nd5/2nd5/2. Their lower level is then chosen to be (n + 2)p3/2(n − 2)f . The final

energy level of for this model is (n+ 1)dj(n− 2)f [8]. With this method their goal

was to study the interaction and see if their method of configuration-interaction

held true for multiple values of n. Our work differs as in we study two photon

transitions, and wish to understand the energy exchange so that we can control

it. By only choosing the initial and lower states we are able to further study the

interaction that is taking place between the virtual intermediate levels and the final

25
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state. We are looking for these matrix elements to create simulations.

3.1 Comparison to Previous Work

In the previous work Yu et-al. [8], and Lee and Gallagher [9] worked on configuration

interaction models and derived [8],

V = 〈nd5/2nd5/2|
r1r2
R3
|(n+ 2)p3/2(n− 2)f〉

× 1

∆
〈(n+ 2)p3/2(n− 2)f |~r1 · ~E|(n+ 1)dj(n− 2)f〉 . (3.1)

This equation calculates the coupling of states that are energetically nearby. In

Eq. (3.1) ~r1, and ~r2 are the Rydberg electrons positions and ~E is the microwave

electric field. For their example they let n = 42, which can be used to find their

initial, intermediate, lower, and final states. Our goal is to use our method to reach

a similar matrix element or coupling.

We would like to use Eq. (2.17) to compute the matrix elements using a two-

photon transitions. We start by collecting our states. We choose to also let n = 42.

This means that ` = 40f , Mi = 42d5/2, Mk = 44p3/2, and Mf = 44d5/2. From the

use of closely related energy states the virtual intermediate state has been chosen

for us by selection rules [8]. For visual representation of this interaction we can

look at Fig. 3.1, this shows one of the quantum mechanical possibilities that can

take place during this two photon transition. We can rewrite Eq. (2.17) in braket

notation giving us,

a0
3e3

4πε0R3
〈M`|r|Mi〉

[∑ 〈Mk|r|Mi〉 〈Mf | ~Er|Mk〉
ωki − ωd

+
∑ 〈Mk|r|Mi〉 〈Mf | ~Er|Mk〉

ωki − ωµ

]
(3.2)
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ω

ω

ω

ki

μ

Figure 3.1: This is an updated model of Fig. 1.5. This updated figure revisits
the microwave assisted transition. In red is the dipole dipole interaction, and
labeled in blue is the microwave photon. ` is our lower level, i is the initial level,
k is the intermediate level, and f is the final level. ωki is the energy gap between
the initial and intermediate states. ωd is the energy given up during the dipole
dipole interaction and is the gap between the lower energy level and the initial.
ωµ is the energy of the photon being added to the system.

The factor outside of the integration is a constant to keep our answer in SI units.

A couple terms arise in this calculation a0 is the Bohr radius, 1
4πε0

is Coulomb’s

constant, e is the electron mass, and R is the atomic separation of the atoms.

Doing this provides us with 〈40f |r|42d5/2〉 = 646ea0, 〈44p3/2|r|42d5/2〉 = 628ea0,

and 〈44d5/2|r|44p3/2〉 = 1154ea0. With these numbers we can calculate the ω values

in the equation. Using the numbers for the radial integration we get ωki − ωd =

0.093 GHz, and ωki − ωµ = 40.176 GHz. Since ωki − ωµ >> ωki − ωd We can say

the second term in Eq. (3.2) is approximately zero, yeilding

a0
3e3

4πε0R3
〈M`|r|Mi〉

[
〈Mk|r|Mi〉 〈Mf || ~E|r|Mk〉

ωki − ωd

]
. (3.3)

The above equation can be compared to Eq. (3.1). In Eq. (3.1) we can compare our

ω values to their ∆ value. The product of our sums correlates to their second state,
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while our outer state compares to their state unaffected by ∆. The constants we

introduced to the term are a correction to SI units, the work in Eq. (3.1) is fo atomic

units. Using the values we obtained for the energy levels, and Eq. (3.3), we achieve

similar values for the matrix element. This step confirms that our equation works

and that we are one step closer to better understanding the two photon transition.

3.2 Calculating Matrix Elements

To construct an example that studies the two photon transition more in depth we

choose an example such that ωd ≈ ωµ. This causes the denominator of both terms

will be similar and thus not be able to be ignored for our calculations. If we look

at Fig. 3.2 it is visible that the microwave photon is almost the same energy as the

emitted photon from the dipole-dipole interaction. To study this more we choose a

state such that ` = 43p, i = 44s1/2, k = 44pk, and f = 45s1/2. This gives us,

a30e
3| ~E|

4πε0R3
〈43pk|r|44s1/2〉

[
Σ
〈44pk|r|45s1/2〉 〈45s1/2|r|44pk〉

ωki − ωd
+

Σ
〈44pk|r|45s1/2〉 〈45s1/2|r|44pk〉

ωki − ωµ

]
. (3.4)

We call the intermediate states a pk state because there are two possibilities which

need to be summed over. This means k = 1/2 or k = 3/2, both of which are equally

possible. This brings up the fact that our ω values differ depending on which state is

used. The state does not differ tremendously however. To create a generic formula

for solving the above equation we created a piece of code in Mathematica (appendix

1). In this code we used our previous methods of finding the value of the states and

created a list to create multiple sums.
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Figure 3.2: A stark map indicating the dipole-dipole interaction of an initial
state 44s, with one Rydberg electron emitting a photon dropping to a 43p, while
the other absorbs the same photon and a microwave photon to reach the 45s
level. Note that the red and green lines are equal in length and represent the
dipole-dipole interaction. The blue line, or microwave photon, is almost as long
as the dipole interaction.
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Table 3.1: Table consisting of values for energy transitions of particular states.
The first column depicts which matrix element is being calculated. The second
column provides which state is being tested for different p-states. The last column
gives the numerical value calculated using the super computer and Numerov’s
method.

Matrix Element States Values
Mi` 〈43p1/2|r|44s1/2〉 582ea0

〈43p3/2|r|44s1/2〉 838ea0

Mik 〈44p1/2|r|45s1/2〉 648ea0
〈44p3/2|r|45s1/2〉 902ea0

Mkf 〈45s1/2|r|44p1/2〉 611ea0
〈45s1/2|r|44p3/2〉 880ea0

To calculate Eq. (3.4), we used the computer code to solve for the energy of

our states. The value of all the matrix elements in this calculation can be found in

Table. 3.1. The matrix element calculation using k = p1/2 gave us 4.2 kHz, while

using k = p3/2 we got 7.8 kHz. These results are similar to each other and the work

provided by Yu et-al. and Lee and Gallagher.
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Conclusion

We were able to create an equation that is capable of creating matrix elements

needed for simulations on two photon energy transitions. This equation was tested

against previous work and as of now is believed to be a complete calculation of all

required matrix elements.

Students in the future will need to use these calculations to create simulations.

The simulations should be able to control the initial values, as well as the final

state. With the information about those two states, the simulations should be able

to run calculations to find a final state and sum over the virtual intermediate states.

Once these future simulations can do such calculations they should lead the way to

experimental work, and provide preliminary data.

The experimental work will require the careful construction of a system that

places microwave radiation inside of the MOT. The microwave radiation needs to

be controlled so that the photons being absorbed by the Rydberg electrons in the

system can receive the correct energy. Information on the correct energies will come

from the simulations.

Once the simulations can match the experimental work we will be able to con-

ceive further work in understanding full control of a two photon transition. This

control of two photon transitions will provide another switch will further help the
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understanding of the energy exchange among Rydberg atoms, and bring us one step

closer to controlling the energy exchange.

There are some assumptions made in our calculations that can be accounted

for in future work. We assume the polarizations of the atoms are identical. Shown

in our previous work, the orientation of the radiation compared to the dipoles will

have to be accounted for.



Appendix A

Mathematica Code

The following code is designed for the input of energy values for an initial , inter-

mediate, and final state. These energy values are received from code on the super

computer. These values are then put into the equation in the code, which outputs

a numerical answer in hertz. This value is the matrix element for the provided two

photon transition.
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(*Code written for calculating the
matrix elements of a photon assisted transition*)

In[130]:= e = 1.6*10-19;
a0 = .529*10-10;
R = 2.4*10-6;
EE = 35*10-3;
e0 = 8.85*10-12;
h = 6.626*10-34;
k = {64.1962, 64.1552};
(*List of values for the intermediate state, {1/2, 3/2}*)
i= {65.7011}; (*List of values for the initialstate, {1/2}*)
L = {67.4181, 67.3739}; (*List of values for the lower state,
{1/2, 3/2}, correlates to script l in the text.*)
f = {62.6001}; (*List of values for the final state, {1/2}*)
ωj = TableAbsi[[1]]-L[[n]], n, 1, Lengthk*30*109;
(*A table calculating all possible omega_d values,
but we choose omega_d to be one of these*)
ωd = ωj[[2]];
ωki = TableAbsk[[n]]-i[[1]], n, 1, Lengthk*30*109;
(*To put the wave number in gigahertz we multiple by 30*109*)

ωp = TableAbsf[[1]]-
ωj[[n]]

30*109
+i[[1]] , n, 1, Lengthk *30*109;

(*A table calculating all possible omega_mu values,
but we choose omega_mu to be one of these*)
ωμ = ωp[[1]];
Mik = {648, 902}; (*List of states calculated using

super computer first and second correlate to 1/2, and 3/2*)
MiL = {582, 838};
Mkf = {611, 880};

In[145]:=
1

h

a03*e3*EE*MiL[[2]]

4*π*e0*R3
Sum 

(Mik[[n]]*Mkf[[n]])

(ωki[[n]]-ωd)*h
, n, 1, Lengthk+

Sum 
(Mik[[n]]*Mkf[[n]])

(ωki[[n]]-ωμ)*h
, n, 1, Lengthk

Out[145]= -7882.66

-4189.229882951762`(*4.2 kHz*)
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