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Abstract: In this paper, we present methods to detect and recover from sensor failure in dense wireless sensor networks.
In order to extend the lifetime of a sensor network while maintaining coverage, a minimal subset of the
deployed sensors are kept active while the other sensors can enter a low power sleep state. Several distributed
algorithms for coverage have been proposed in the literature. Faults are of particular concern in coverage
algorithms since sensors go into a sleep state in order to conserve battery until woken up by active sensors.
If these active sensors were to fail, this could lead to lapses in coverage that are unacceptable in critical
applications. Also, most algorithms in the literature rely on an active sensor that is about to run out of battery
waking up its neighbors to trigger a reshuffle in the network. However, this would not work in the case of
unexpected failures since a sensor cannot predict the occurrence of such an event. We present detection and
recovery from sensor failure in dense networks. Our algorithms exploit the density in the recovery scheme to
improve coverage by 4-12% in the event of random failures. This fault tolerance comes at a small cost to the
network lifetime with observed lifetime being reduced by 6-10% in our simulation studies.

1 INTRODUCTION

Wireless Sensor Networks (WSNs) have attracted a
lot of research interest due to their applicability in se-
curity, monitoring, disaster relief and environmental
applications. WSNs consist of a number of low-cost
sensors scattered in a geographical area of interest and
connected by a wireless RF interface. Sensors gather
information about the monitored area and send this
information to an external node known as the base
station. The radio on board these sensor nodes has
a limited range and allows the node to transmit over
short distances. In most deployment scenarios, it is
extremely expensive for each node to communicate
directly to the sink and hence, the model of commu-
nication is to transmit over short distances to other
peers.

In order to keep their cost low, sensors are
equipped with limited energy and computational re-
sources. The energy supply is typically in the form of
a battery and once the battery is exhausted, the sensor
is considered to be dead. Sensor nodes are also lim-
ited in terms of memory and processing capabilities.
Hence, harnessing the potential of these networks in-
volves tackling a myriad of different issues from al-
gorithms for network operation, programming mod-
els, architecture and hardware to more traditional net-

working issues. For a more detailed survey on the var-
ious computational research aspects of Wireless Sen-
sor Networks, see the survey papers (Akyildiz et al.,
2002; Chong and Kumar, 2003; Iyengar and Brooks,
2004a; Schmid and Wattenhofer, 2006; Römer and
Mattern, 2004).

In this paper, we examine the problem of sensor
coverage. Many intended applications of Wireless
Sensor Networks involve having the network moni-
tor a region or a set of targets. To ensure that the
area or targets of interest can be covered, sensors
are usually deployed in large numbers by randomly
dropping them in this region. Deployment is usu-
ally done by flying an aircraft over the region and
air dropping the sensors. Since the cost of deploy-
ment far exceeds the cost of individual sensors, many
more sensors are dropped than needed to minimally
cover the region. This leads to a dense network and
gives rise to an overlap in the monitoring regions of
individual sensors. A simplistic approach to meet the
coverage objective would be to turn on all sensors af-
ter deployment. But this needlessly reduces the life-
time of the network since the overlap between moni-
toring regions implies that not all sensors need to be
on at the same time. This can also lead to a very
lossy network with several collisions happening in the
medium access control (MAC) layer due to the den-



sity of nodes. In order to extend the lifetime of a sen-
sor network while maintaining coverage, a minimal
subset of the deployed sensors are kept active while
the other sensors can enter a low power sleep state.
Several distributed algorithms for coverage have been
proposed in the literature (Lu and Suda, 2003; Prasad
and Dhawan, 2007; Dhawan and Prasad, 2009; Cardei
and Du, 2005; Kumar et al., 2004; Cardei et al.,
2005).

Faults are of particular concern in coverage algo-
rithms since sensors go into a sleep state in order to
conserve battery until woken up by active sensors. If
these active sensors were to fail, this could lead to
lapses in coverage that are unacceptable in critical ap-
plications. Also, most algorithms in the literature rely
on an active sensor that is about to run out of battery
waking up its neighbors to trigger a reshuffle in the
network. However, this would not work in the case
of unexpected failures since a sensor cannot predict
the occurrence of such an event. In a denser network,
more sensors should be available to compensate for
the failing sensor. In this paper, we exploit the den-
sity to recover from failure. This robustness comes at
a small cost to the network lifetime.

The remainder of this paper is as follows. In Sec-
tion 2, we present related work in the literature on
both coverage and fault-tolerance in Wireless Sensor
Networks. In Section 3 we discuss our failure recov-
ery scheme. Section 4 presents our simulation set-up
and results. Finally, we conclude in Section 5.

2 RELATED WORK

Coverage Algorithms: In this section, we briefly
survey existing approaches to maximizing the lifetime
of sensor networks, while meeting certain coverage
objectives. (Cardei and Wu, 2006) gives a more de-
tailed survey on the various coverage problems and
the scheduling mechanisms they use. (Sahni and Xu,
2004) also surveys the coverage problem along with
other algorithmic problems relevant to sensor net-
works.

The coverage problem has been shown to be
NP-complete in (Abrams et al., 2004; Cardei and
Du, 2005). The approach taken in the literature
has evolved around algorithmic techniques commonly
used to work with NP-complete problems. This is
indicated by the use of solutions to related problems
such as that of finding domatic partitions, coloring, set
covers, etc, as applied to coverage. Initial approaches
to the problem in (Slijepcevic, 2001; Cardei and Du,
2005; Abrams et al., 2004) considered the problem of
finding the maximum number of disjoint covers. A

number of distributed heuristics are presented in (Lu
and Suda, 2003; Prasad and Dhawan, 2007; Dhawan
and Prasad, 2009; Cardei and Du, 2005; Kumar et al.,
2004; Cardei et al., 2005). We only discuss one spe-
cific algorithm below in the interest of space. Our al-
gorithm improves upon this algorithm by adding fail-
ure recovery to it.

Face-based Coverage (Berman et al., 2004)
present a coverage algorithm that models the network
as a planar graph and then uses the faces of this graph
to determine which sensors should be active in order
to cover the area of interest. Each face represents a
geographical area that can be sensed by one or more
sensors. These faces are found by tracing the outer
edge of the range of each sensor. The intersection
points of all of these ranges are found and placed as
nodes on a graph, with the lines along the edge of
each sensor becoming edges in the graph. A sensor
then simply needs to keep track of each of its faces
and which neighboring sensors are capable of cover-
ing those faces.

Each sensor can be in one of various states at any
given time. For every sensor, the basic states include
Active, Idle, Permanent, Vulnerable and Terminated.
Active sensors sense data for the faces they cover and
transmit that data to the base station. Idle sensors nei-
ther sense data nor transmit data but instead eneter a
low power sleep state. Permanent sensors, are a vari-
ation on active sensors and they also sense data and
transmit data, but are distinguished from active sen-
sors because they have at least one face for which they
are the only covering sensor. Vulnerable sensors are
sensors that are still in the process of deciding a state.
Finally, a Terminated state refers to sensors that are
no longer capable of contributing to the network.

Sensors periodically go through state transitions,
where they will change from one state to another. The
algorithm is broken into rounds and at the beginning
of each round, if an idle or active sensor has a vulner-
able neighbor, it will become vulnerable. This allows
a sensor to trigger a change in the cover set by becom-
ing vulnerable. This is called a reshuffle. Vulnerable
sensors become idle if all of its faces are covered by
either an active sensor, a permanent sensor, or a vul-
nerable sensor with a larger power supply. Vulnerable
sensors become active if they have a face not covered
by an active or vulnerable sensor. If a sensor’s battery
level goes low enough to only last a few more rounds,
it will transition to vulnerable to trigger a reshuffle so
that it may be replaced. Finally, any sensor becomes
terminated if its battery level goes to zero, and any
non-terminated sensor becomes permanent if it has a
face that is covered by no other non-terminated sen-
sor. See (Berman et al., 2004) for more details.



Fault-tolerance: Fault Tolerance has been exten-
sively studied in the broader context of distributing
computing (Pradhan, 1996), and also in the context
of Wireless Sensor Networks. (Iyengar and Brooks,
2004b) examines the connection between classical
fault tolerance techniques and sensor networks and
provide two case studies. (Gupta and Younis, 2003)
examines fault tolerance in clustering, but only looks
at heterogeneous sensor networks where clustering is
performed by special high energy gateway nodes that
are much more powerful than regular sensor nodes.
(Kuhn, 2006) examines fault tolerant clustering by
formulating clustering as the k-fold dominating set
problem. They give a probabilistic algorithm for a
unit disk graph network. The authors go on to present
fast approximation algorithms for the special cases of
graphs with low arboricity in (Lenzen and Watten-
hofer, 2010). In (Raj and Ramesh, 2008), the authors
consider clustering in a sensor network to be deployed
in landslide detection applications. However, they de-
fine a fault as a sensor that gives incorrect values as
opposed to a failed sensor.

3 FAILURE RECOVERY

We started with the basic face-based coverage al-
gorithm of (Berman et al., 2004) and looked at ways
to detect sensor failure in dense deployment scenar-
ios. Failures can cause this algorithm to break down
since the algorithm depends on sensors being able to
trigger a reshuffle before going to the terminated state.
In the case of sensor failure, this may not happen. A
failing sensor does not know in advance that it is go-
ing to fail, so it has no opportunity to trigger a reshuf-
fle. When an active or permanent sensor fails, the
faces it was responsible for will go uncovered until
the next reshuffle happens, which may be a while. An
ideal fault tolerant algorithm would be able to imme-
diately activate enough of those sensors to negate the
effects of the sensor failure.

In the case of dense deployments, the degree of
the graph representing the network (i.e., the num-
ber of neighbors a given sensor has) is larger than
that for less dense deployments. This leads to a net-
work organization wherein, as the density increases,
the number of active/permanent sensors within com-
munication range of each other also likely increases.
This coupled with the inherent broadcast property
of the wireless channel would allow neighboring ac-
tive/permanent sensors to detect the failure of other
active sensors since upon failing these sensors would
cease broadcasting. We modified the base algorithm
to detect failure by having each active sensor con-

struct a list of 1-hop neighbors that were either active
or permanent. The sensor then listened for broadcast
activity from these neighboring nodes. If at the expi-
ration of a timer, no activity was detected for one of
these neighboring, the sensor monitoring for activity
would trigger a reshuffle for the network by going to
a vulnerable state.

Without adding this mechanism for fault toler-
ance, the faces the failed sensor was responsible for
may go uncovered for a length of time depending
on the frequency of reshuffles in the system. If the
reshuffles are frequent, the sensors will take over the
failed sensor’s faces more quickly, but will not be
able to immediately recover from the failure. Faces
that the failed sensor was responsible for would be
uncovered until all neighboring sensors became vul-
nerable for the next reshuffle. In most cases, there
are some active or permanent neighboring sensors, re-
gardless of the number of vulnerable neighboring sen-
sors. Transitioning these sensors to vulnerable would
help ensure that recovery for the failed sensor hap-
pens more quickly. The biggest impact on the net-
work’s coverage after a sensor failure is immediately
after the sensor fails. Sensors responding to the fail-
ure would be able to respond immediately to cover
any faces that they can reach and the failed sensor was
responsible for. This allows the initial impact of the
failure to be minimized. It is worth mentioning that
there will always be at least one face that cannot be
immediately recovered in this way, since the failing
sensor was active or permanent because no other sen-
sor was covering one of its faces.

4 SIMULATION RESULTS

In order to study the performance of the proposed
fault-tolerance model, we have conducted some pre-
liminary simulations. We implement the face-based
algorithm as described in (Berman et al., 2004) in
C++ and then modify this implementation to include
the failure recovery process described in Section 3.

For our simulation setup, we randomly create
dense networks of sensors. We varied the number of
sensors in a 30x30 area. We ran the simulation with
25, 50, 75, and 100 sensors scattered randomly in this
area. For any given network size, we created five
different randomly generated configurations. Addi-
tionally, each sensor was given a random battery level
between 10 and 20 units and a communication range
of 10 m. We used a reshuffle threshold of 2. The
reshuffle threshold is the maximum drop in battery
level before triggering a reshuffle. In order to inject
failure into the simulation, we randomly determined



Table 1: Failing sensor statistics.

Sensor count Type Active neighbors Vulnerable neighbors Faces covered
25 basic 5.810 1.776 19.724
25 fault tolerant 5.879 7.690 17.672
50 basic 5.771 8.593 49.008
50 fault tolerant 5.372 15.947 39.796
75 basic 5.536 15.762 64.548
75 fault tolerant 5.205 22.217 58.843

100 basic 7.421 18.345 66.817
100 fault tolerant 6.528 27.549 53.724

how many sensors should fail each round based on
a failure chance of 5%, up to a maximum of 5% of
the total sensors failing in one round. For every sen-
sor that failed, we made the sensor enter a terminated
stated immediately. In the fault tolerant version, any
non-terminated sensors immediately became vulnera-
ble. We ran this both with the normal version and the
fault tolerant version, and ensured that the same sen-
sors failed at the same time for both the normal ver-
sion and the fault tolerant version, in order to better
compare the two. The simulation was terminated once
the coverage dropped to below 80% of the maximum
possible coverage from the beginning of the simula-
tion.

Our first goal was to track the number of active
sensors each failing sensor had as a neighbor. At the
time of each sensor’s failure, we recorded the number
of active neighbors, vulnerable neighbors, the number
of faces the sensor was covering, and the number of
faces with no other non-terminated sensor. The aver-
age over each of the five configurations can be seen
in Table 1. These active neighboring sensors become
vulnerable in reaction to the detection of the sensor
failure, triggering a reshuffle, and are very important
in the fault tolerant version. By design all these net-
works are extremely dense and hence we expect to see
multiple active neighbors for each failing sensor.

The implementation of the failure recovery algo-
rithm also led to an improvement of coverage as ex-
pected since reshuffles triggered by the detection of
a failed sensor improved the amount of coverage.
We tracked the total time for which the network was
100% covered and the fault tolerant version covered
between 4-12% more area than the basic algorithm.
This improved coverage came at a slight cost to the
network lifetime. We tracked the time by which net-
work coverage dropped below 80% and used this to
terminate the simulation. Figure 1 shows this data
for the different network sizes and for sensors with
different ranges. As can be seen from the figure,
the improved coverage gained through fault-tolerance
comes at a 6-10% decrease in lifetime in the worst

case (which happens at the higher range). At the
lower ranges, our fault tolerant algorithm provides
similar network lifetime to the basic algorithm.

Figure 1: Lifetime of the Network in rounds

5 FUTURE WORK AND
CONCLUSIONS

In this paper, we present a fault-tolerance recov-
ery scheme for coverage in wireless sensor networks
that exploits the density of the network to detect and
recover from failures. The algorithm improved cov-
erage by 4-12% at the cost of reducing lifetime by
6-10%. Future work on fault-tolerant coverage so-
lutions includes exploring the use of a heterogeneous
collection of sensors, where some sensors have signif-
icantly more battery power than the rest. We are also
exploring a modified algorithm to determine which
sensor is best suited to cover certain faces based on
how many faces it would be responsible for, instead
of basing the decision entirely on battery levels.
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