Gaussian Guesswork: Infinite Sequences and the Arithmetic-Geometric Mean

Janet Heine Barnett
Colorado State University-Pueblo, janet.barnett@csupueblo.edu

Follow this and additional works at: https://digitalcommons.ursinus.edu/triumphs_calculus

Part of the Analysis Commons, and the Other Mathematics Commons

Recommended Citation
https://digitalcommons.ursinus.edu/triumphs_calculus/2

This Course Materials is brought to you for free and open access by the Transforming Instruction in Undergraduate Mathematics via Primary Historical Sources (TRIUMPHS) at Digital Commons @ Ursinus College. It has been accepted for inclusion in Calculus by an authorized administrator of Digital Commons @ Ursinus College. For more information, please contact aprock@ursinus.edu.
Gaussian Guesswork:
Infinite Sequences and the Arithmetic-Geometric Mean

Janet Heine Barnett

December 15, 2018

Just prior to this 19th birthday, the mathematical genius Carl Friedrich Gauss (1777–1855) began a “mathematical diary” in which he recorded his mathematical discoveries for nearly 20 years. Among these discoveries was the existence of a beautiful relationship between three particular numbers:

- the ratio of the circumference of a circle to its diameter, or π;
- a specific value of a certain (elliptic) integral, which Gauss denoted by $\varpi = 2\int_0^1 \frac{dx}{\sqrt{1-x^4}}$;
- a number called “the arithmetic-geometric mean” of 1 and $\sqrt{2}$, which he denoted by $M(1, \sqrt{2})$.

Like many of his discoveries, Gauss uncovered this particular relationship through a combination of the use of analogy and the examination of computational data, a practice that historian Adrian Rice calls “Gaussian Guesswork” in his Math Horizons article subtitled “Why 1.19814023473559220744… is such a beautiful number” [Rice, November 2009].

This short project is one of a set of four projects that looks at the power of Gaussian guesswork via the story of his discovery of this beautiful relationship. Based on excerpts from Gauss’s mathematical diary [Gauss, 2005] and related manuscripts, this particular project focuses on how infinite sequences are used to define the arithmetic-geometric mean. We begin in Section 1 with the definition, some examples and basic properties of the arithmetic-geometric mean. In Section 2, we then look briefly at how the arithmetic-geometric mean is related to the Gaussian Guesswork story.

1 The Arithmetic-Geometric Mean

Although Gauss appears to have discovered the arithmetic-geometric mean when he was only 14 years old,\(^1\) he published very little about it during his lifetime. Much of what we know about his work in this area instead comes from a single paper [Gauss, 1799] that was published as part of his mathematical legacy (or, as the Germans would say, as part of his Nachlass) only after his death.

In the first excerpt\(^2\) from this paper that we will read in this project, Gauss began by defining two related infinite sequences.

\(^1\) Gauss himself reminisced about his 1791 discovery of this idea in a letter [Gauss, 1917] that he wrote to his friend Schumacher much later, in 1816. Although his memory of the exact date may not be accurate, Gauss was certainly familiar with the arithmetic-geometric mean by the time he began his mathematical diary in 1796.

\(^2\) All Latin-to-English translations of Gauss’ text used in this project are due to George W. Heine III (Math and Maps, http://www.mathnmaps.com/). To set them apart from the project narrative, original source excerpts are set in sans serif font and bracketed by the following symbol at their beginning and end:
Let \(\{ a, a_1, a_2, a_3, \ldots \} \) and \(\{ b, b_1, b_2, b_3, \ldots \} \) be two sequences\(^3\) of magnitudes formed by this condition: that the terms of either correspond to the mean between the preceding terms, and indeed, the terms of the upper sequence have the value of the arithmetic mean, and those of the lower sequence, the geometric mean, for example,

\[
\begin{align*}
\frac{1}{2}(a + b), & \quad \sqrt{ab}, \\
\frac{1}{2}(a_1 + b_1), & \quad \sqrt{a_1 b_1}, \\
\frac{1}{2}(a_2 + b_2), & \quad \sqrt{a_2 b_2}.
\end{align*}
\]

But we suppose \(a \) and \(b \) to be positive reals and [that] the quadratic [square] roots are everywhere taken to be the positive values; by this agreement, the sequences can be produced so long as desired, and all of their terms will be fully determined and positive reals [will be] obtained.

Since this may be the first time that you are hearing about the ‘geometric mean’ of two positive numbers \(a, b \), notice that one way to think about it is simply as the length \(s \) of a side of a square that has the same area of a rectangle with sides of length \(a \) and \(b \) respectively; this gives us the formula \(s^2 = ab \), or \(s = \sqrt{ab} \). Along with the more familiar ‘arithmetic mean’, computed via the formula \(\frac{1}{2}(a + b) \), the geometric mean is one of several ‘averages’ that were studied by mathematicians as far back as the ancient Greeks. The terminology ‘arithmetic’ and ‘geometric’ to describe these two different types of means also dates back to ancient Greek mathematics.

In his 1799 Nachlass paper, Gauss gave four specific examples of sequences \((a_n) \) and \((b_n) \) defined by way of the arithmetic and geometric means as described above; let’s pause to look at the first two of these now.

Example 1: \(a = 1, \quad b = 0.2 \)

\[
\begin{align*}
a = & \quad 1.00000 00000 00000 00000 \\
a_1 = & \quad 0.60000 00000 00000 00000 \\
a_2 = & \quad 0.52360 67977 49978 99964 \\
a_3 = & \quad 0.52080 54052 86123 66484 \\
a_4 = & \quad 0.52080 54052 86123 95414 \\
a_5 = & \quad 0.52080 16381 06187
\end{align*}
\]

\[
\begin{align*}
b = & \quad 0.20000 00000 00000 00000 \\
b_1 = & \quad 0.44721 35954 99957 93928 \\
b_2 = & \quad 0.51800 40128 22268 36005 \\
b_3 = & \quad 0.52079 78709 39876 24344 \\
b_4 = & \quad 0.52080 16380 99375 \\
b_5 = & \quad 0.52080 16381 06187
\end{align*}
\]

Here \(a_5, b_5 \) differ in the \(23^{\text{rd}} \) decimal place.

\(^3\) Gauss himself used prime notation (i.e., \(a', a'', a''' \)) to denote the terms of the sequence. In this project, we instead use indexed notation (i.e., \(a_1, a_2, a_3 \)) in keeping with current notational conventions. To fully adapt Gauss’ notation to that used today, we could also write \(a_0 = a \) and \(b_0 = b \).
This task examines Example 1 from Gauss’ paper.

(a) Verify that the values given by Gauss in the previous excerpt are correct. Are you able to use your calculator to obtain the same degree of accuracy (21 decimal places!) that Gauss obtained by hand calculations?

Write three observations about the two sequences in this example.
Use a full sentence to state each of your observations.

In Example 2 from his paper, Gauss set $a = 1$, $b = 0.6$.

(a) Use a calculator or computer to compute the next four terms of each sequence.

$$a = 1.000000 00000 00000 00000 00000 00000 00000 00000 0$$
$$b = 0.600000 00000 00000 00000 00000 00000 00000 00000 0$$

$$a_1 = \quad b_1 =$$
$$a_2 = \quad b_2 =$$
$$a_3 = \quad b_3 =$$
$$a_4 = \quad b_4 =$$

(b) In Task 1, part (a), you made three observations about Gauss’ Example 1.
Do the same general patterns hold for Example 2?
If so, why do you think this is? If not, in what way(s) are the two examples different?

With these two examples in hand, let’s now go back to look at some of the general properties that Gauss claimed will always hold for such sequences. The following excerpt includes three such properties, which we will examine in further detail in the tasks below. For now, read through each of these carefully and compare them to the observations that you made in Task 1, part (a).

Moreover, we first offer here the following observations:

I. If $a = b$, all of the terms of either sequence will be $a = b$.

II. If however a, b are unequal, then $(a_1 - b_1)(a_1 + b_1) = \frac{1}{4}(a - b)^2$, whence it is concluded that $b_1 < a_1$, and also that $b_2 < a_2$, $b_3 < a_3$ etc., i.e. any term of the lower sequence will be smaller than the corresponding [term] of the upper. Wherefore, in this case, we suppose also that $b < a$.

III. By the same supposition it will be that $a_1 < a$, $b_1 > b$, $a_2 < a_1$, $b_2 > b_1$ etc.; therefore the upper sequence constantly decreases, and the lower constantly increases; thus it is evident that each [sequence] has a limit; these limits are conveniently expressed4 a_∞, b_∞.

The first of Gauss’ observations needs little proof — if $a = b$, then clearly the arithmetic mean is $\frac{1}{2}(a + b) = \frac{1}{2}(2a) = a$ and the geometric mean is $\sqrt{ab} = \sqrt{a^2} = a$; thus, $(a_n) = (a) = (b_n)$ gives just one constant sequence. In the following tasks, you will verify Gauss’ next two observations.

4In keeping with the notation currently in use today, we have replaced Gauss’ use of superscripts (a_∞, b_∞) to denote the limiting values with subscripts (a_∞, b_∞) throughout this project.
Task 3

This task examines Gauss’ Observation II:

II. If however a, b are unequal, then $(a_1 - b_1)(a_1 + b_1) = \frac{1}{4}(a - b)^2$, whence it is concluded that $b_1 < a_1$, and also that $b_2 < a_2, \ b_3 < a_3$ etc., i.e. any term of the lower sequence will be smaller than the corresponding term of the upper. Wherefore, in this case, we suppose also that $b < a$.

(a) Use the definitions of a_1, b_1 to verify that $(a_1 - b_1)(a_1 + b_1) = \frac{1}{4}(a - b)^2$.

(b) Now explain why the equality in part (a) allows us to conclude that $a_1 > b_1$.

(c) Finally, explain why we are now able to conclude that $b_n < a_n$ for all values of n.

Task 4

This task examines Gauss’ Observation III:

III. By the same supposition it will be that $a_1 < a, b_1 > b, a_2 < a_1, b_2 > b_1$ etc.; therefore the upper sequence constantly decreases, and the lower constantly increases; thus it is evident that each sequence has a limit; these limits are conveniently expressed by a_∞, b_∞.

To see what Gauss meant by the phrase ‘the same supposition’ here, look back at his statement of Observation II, and notice that he ended that earlier observation with the assertion that ‘…we suppose also that $b < a$’.

(a) Use the assumption that $b < a$ and the definitions of the two sequences to verify Gauss’ claim that (a_n) is a strictly decreasing sequence and that (b_n) is a strictly increasing sequence.

Consider Gauss’ next assertion: ‘…thus it is evident that each sequence has a limit’. Write a convincing explanation why this conclusion must hold, given what we know about these two sequences thus far. Do you agree with Gauss that this conclusion is ‘evident’?

(b) In your answer to part (a), you may have mentioned that the two sequences in question are bounded — that is, bounded both above and below. Whether or not you did so, state the values of the upper and lower bounds for the sequence (a_n), and for the sequence (b_n). Why it is important that (a_n) is bounded, as well as increasing? Similarly, why it is important that (b_n) is bounded, as well as decreasing?

(c) Now find a theorem in your Calculus textbook (in the chapter that considers infinite sequences) that could also be used to conclude that the sequences (a_n) and (b_n) converge. Give both the name of this theorem and its full statement.

(d) Do you think that the notation a_∞, b_∞ that Gauss used to denote the limits of these sequences is appropriate? Why or why not? Based on what you’ve seen in Examples 1 and 2, how do you expect the values of a_∞ and b_∞ to be related?
Gauss made one final observation about the sequences \((a_n), (b_n)\), which you have perhaps already predicted yourself:

\[\frac{a_1 - b_1}{a - b} = \frac{(a - b)}{4(a_1 + b_1)} \]

IV. Finally, from \(\frac{a_1 - b_1}{a - b} = \frac{(a - b)}{4(a_1 + b_1)} \) it follows that \(a_1 - b_1 < \frac{1}{2}(a - b) \), and in the same way, \(a_2 - b_2 < \frac{1}{2}(a_1 - b_1) \) etc. Hence, it is concluded that \(a - b, a_1 - b_1, a_2 - b_2, a_3 - b_3 \) etc forms a strictly decreasing sequence and the limit itself is \(0 \).

Thus \(a_\infty = b_\infty \), i.e., the upper and lower sequences have the same limit, which always remains below the one and above the other.

We call this limit the arithmetic-geometric mean between \(a \) and \(b \), and denote it by \(M(a, b) \).

Task 5
This task examines Gauss’ Observation IV from the previous excerpt.

(a) Verify that \(\frac{a_1 - b_1}{a - b} = \frac{(a - b)}{4(a_1 + b_1)} \).

Hint: Start with the equality \((a_1 - b_1)(a_1 + b_1) = \frac{1}{4}(a - b)^2 \) from Gauss’ Observation II.

(b) Now verify that \(\frac{(a - b)}{4(a_1 + b_1)} = \frac{a - b}{2(a + b) + 4b_1} \).

Combining the results of parts (a) and (b), we now have the equality \(\frac{a_1 - b_1}{a - b} = \frac{a - b}{2(a + b) + 4b_1} \).

Use this equality to explain why the following hold:

(i) \(a_1 - b_1 < \frac{1}{2}(a - b) \)

(ii) \(a_2 - b_2 < \frac{1}{2}(a_1 - b_1) < \frac{1}{4}(a - b) \)

(iii) Taking \(n \) to be any arbitrary value, \(a_n - b_n < (\frac{1}{2})^n (a - b) \)

(c) Based on part (b), why can we now conclude (with Gauss) that \('a - b, a_1 - b_1, a_2 - b_2, a_3 - b_3 \) etc forms a strictly decreasing sequence and the limit itself is \(0 \)? That is, why does \(\lim_{n \to \infty} a_n - b_n = 0 \)? Also explain why this allowed Gauss to conclude that \(a_\infty = b_\infty \).

Now that we have verified Gauss’ claim that \(a_\infty = b_\infty \), his definition of the arithmetic-geometric mean \(M(a, b) \) of two positive numbers \(a \) and \(b \) as the common value of those two limits makes sense!

Stating this in modern notation, we have:

\[M(a, b) = \lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n, \quad \text{where} \quad a_0 = a, b_0 = b, a_{n+1} = \frac{1}{2}(a_n + b_n) \quad \text{and} \quad b_{n+1} = \sqrt{a_n b_n}. \]

This is precisely how \(M(a, b) \) is still defined today, although it is often denoted instead by \(\text{agm}(a, b) \) or \(\text{agM}(a, b) \). Today, the arithmetic-geometric mean is used to construct fast algorithms for calculating values of elementary transcendental functions and some classical constants, like \(\pi \) — examples 1 and 2 above show just how rapidly this process generally converges. In the next section of this project, we will consider why Gauss himself became interested in the arithmetic-geometric mean.
Why is $1.19814023473559220744 \ldots$ such a beautiful number?

The complete answer to this question requires a bit more mathematics than we will study in this short project. In this closing section, we summarize just the highlights. We begin by looking at Gauss’ fourth example of the arithmetic-geometric mean in his 1799 Nachlass paper.

Example 4: $a = \sqrt{2}, \ b = 1$

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>a_1</th>
<th>b_1</th>
<th>a_2</th>
<th>b_2</th>
<th>a_3</th>
<th>b_3</th>
<th>a_4</th>
<th>b_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.414213562373095048802</td>
<td>1.00000000000000000000</td>
<td>1.207106781186547524401</td>
<td>1.189207115002721066717</td>
<td>1.198156948094634295559</td>
<td>1.198123521493120122607</td>
<td>1.198140234793877209083</td>
<td>1.198140234735592207441</td>
<td>1.198140234735592207441</td>
<td></td>
</tr>
</tbody>
</table>

Notice that the first 20 decimal places of the limit value for this example is precisely the number that appears in title of this section. But why would Gauss or others have considered $M(\sqrt{2}, 1)$ to be particularly beautiful?

In fact, Gauss' initial acquaintance with the number $1.19814023473559220744 \ldots$ had nothing to do with the arithmetic-geometric mean, but was related instead to his efforts to evaluate certain types of integrals. One such integral and its value will be quite familiar to you; namely,

$$
\int_0^1 \frac{1}{\sqrt{1-t^2}} \, dt = \frac{\pi}{2}
$$

Make sure you believe that this is a correct value ... and then consider what you might do to evaluate the following quite-similar-looking integral:

$$
\int_0^1 \frac{1}{\sqrt{1-t^4}} \, dt
$$

Stuck? If so, then you’re in good company! Evaluating integrals of the form $\int_0^1 \frac{1}{\sqrt{1-t^n}} \, dt$ for $n > 2$ is notoriously difficult5 ... but also necessary for problems such as determining the arc length of ellipses and other curves that naturally arise in astronomy and physics. For instance, the integral $\int_0^1 \frac{1}{\sqrt{1-t^4}} \, dt$ gives the arc length of a curve known as a lemniscate.

Based on entries in his mathematical diary, we know that Gauss himself began to study elliptic integrals in September 1796, at the ripe old age of 19. Following an analogy suggested by the fact that $\pi = 2 \int_0^1 \frac{1}{\sqrt{1-t^2}} \, dt$, he defined a new constant by setting $\varpi = 2 \int_0^1 \frac{1}{\sqrt{1-t^4}} \, dt$ and used power series techniques to calculate ϖ to twenty decimal places, finding that6

$$
\varpi = 2.662057055429211981046 \ldots
$$

5For $n = 3$ and $n = 4$, $\int_0^1 \frac{1}{\sqrt{1-t^n}} \, dt$ is called an elliptic integral; for $n > 5$, it is called hyperelliptic.

6The symbol ‘ϖ’ that Gauss used to denote this specific value is called “varpi;” it is a variant of the Greek letter π.

6
This task looks at the relationship between \(\varpi \), \(\pi \), and \(M(\sqrt{2}, 1) \).

Recalling that \(\pi = 3.14159265258979323846 \ldots \) and \(M(\sqrt{2}, 1) = 1.19814023473559220744 \ldots \), try to find a relationship between these two numbers and the value of \(\varpi \) given above.

Three years after taking up the study of elliptic functions, Gauss wrote the following entry in his mathematical diary on May 30, 1799 [Gauss, 2005]:

\[
\begin{align*}
\text{We have established that the arithmetic-geometric mean between } 1 \text{ and } \sqrt{2} \text{ is } \pi/\varpi \text{ to 11 places; the proof of this fact will certainly open up a new field of analysis.}
\end{align*}
\]

It took Gauss another year to fully prove that his guesswork about the numerical relationship \(M(\sqrt{2}, 1) = \pi/\varpi \) was correct. The ‘new field of analysis’ that opened up in connection with this proof led him well beyond the study of elliptic functions of a single real-valued variable, and into the realm of functions of several complex-valued variables. Today, a special class of such functions known as the ‘theta functions’ provide a powerful tool that is used in a wide range of applications throughout mathematics — providing yet one more piece of evidence of Gauss’ extraordinary ability as a mathematician and a guesswork genius!

References

Adrian Rice. Gaussian Guesswork, or why 1.19814023473559220744 \ldots \) is such a beautiful number. Math Horizons, pages 12–15, November 2009.
Notes to Instructors

This mini-Primary Source Project (mini-PSP) is one of a set of four mini-PSPs designed to consolidate student proficiency of the following traditional topics from a first-year Calculus course:7

- Gaussian Guesswork: Arc Length and the Numerical Approximation of Integrals
- Gaussian Guesswork: Elliptic Integrals and Integration by Substitution
- Gaussian Guesswork: Polar coordinates, Arc Length and the Lemniscate Curve
- Gaussian Guesswork: Sequences and the Arithmetic-Geometric Mean

Each of the four mini-PSPs can be used either alone or in conjunction with any of the other three. All four are based on excerpts from Gauss’s mathematical diary [Gauss, 2005] and related primary texts that will introduce students to the power of numerical experimentation via the story of his discovery of a relationship between three particular numbers: the ratio of the circumference of a circle to its diameter (\(\pi\)), a specific value (\(\pi\)) of the elliptic integral \(u = \int_0^\pi \frac{dt}{\sqrt{1-t^2}}\); and the Arithmetic-Geometric Mean of 1 and \(\sqrt{2}\). Like many of his discoveries, Gauss uncovered this particular relationship through a combination of the use of analogy and the examination of computational data, a practice referred to as “Gaussian Guesswork” by historian Adrian Rice in his Math Horizons article subtitled “Why 1.19814023473559220744… is such a beautiful number” [Rice, November 2009].

The primary content goal of this particular mini-PSP is to consolidate students’ understanding of sequence convergence, and especially the Monotone Convergence Theorem. In light of these goals, it is assumed that students have had some introduction to the study of sequence convergence, including the statement of the Monotone Convergence Theorem, and that they are familiar with the associated notation and basic vocabulary. Familiarity with integration techniques sufficient to confirm that \(\int_0^1 \frac{dt}{\sqrt{1-t^2}} = \frac{\pi}{2}\) will also be useful for reading the closing section of the project; however, evaluation of this or any other integral is not required for completion of the student tasks in this particular mini-PSP.

Classroom implementation of this and other mini-PSPs in the collection may be accomplished through individually assigned work, small group work and/or whole class discussion; a combination of these instructional strategies is recommended in order to take advantage of the variety of questions included in the project.

To reap the full mathematical benefits offered by the PSP approach, students should be required to read assigned sections in advance of in-class work, and to work through primary source excerpts together in small groups in class. The author’s method of ensuring that advance reading takes place is to require student completion of “Reading Guides” (or “Entrance Tickets”); see pages 10–11 for a sample guide based on this particular mini-PSP. Reading Guides typically include “Classroom Preparation” exercises (drawn from the PSP Tasks) for students to complete prior to arriving in class; they may also include “Discussion Questions” that ask students only to read a given task and jot down some notes in preparation for class work. On occasion, tasks are also assigned as follow-up to a prior class discussion. In addition to supporting students’ advance preparation efforts, these guides provide helpful feedback to the instructor about individual and whole class understanding of the material. The author’s students receive credit for completion of each Reading Guide (with no penalty for errors in solutions).

7As of August 2018, the first of these four mini-PSPs is not yet completed.
For this particular mini-PSP, the following specific implementation schedule is recommended:

- **Advance Preparation Work** (to be completed before class): Read pages 1 – 3, completing Tasks 1 and 2 for class discussion along the way, per the sample Reading Guide on pages 10–11.
- **One Period of Class Work** (based on a 75-minute class period):
 - Brief whole group or small group comparison of answers to Tasks 1 and 2.
 - Small group work on Tasks 3 — 5 (supplemented by whole class discussion as deemed appropriate by the instructor). Note that these three tasks form the mathematical core of this mini-PSP. They are based on the excerpt at the bottom of page 3, which is recommended for advance preparation work. If the advance preparation assignment does not include reading the latter half of page 3, then students will need additional class time to read that half page prior to starting on Task 3.
 - Time permitting, individual or small group reading of last half of page 5 (below Task 5).

- **Follow-up Assignment** (to be completed prior to the next class period): As needed, read the last half of page 5; also read Section 2 (pages 6 – 7), completing Task 6 along the way. This assignment could also be made part of a Reading Guide, and scored for completeness only. Note in particular that the answer to Task 6 is revealed at the top of page 7.

- **Homework (optional)**: A complete formal write-up of student work on Tasks 3 - 5 could also be assigned, to be due at a later date (e.g., one week after completion of the in-class work).

\LaTeX{}code of the entire PSP is available from the author by request to facilitate preparation of reading guides or ‘in-class task sheets’ based on tasks included in the project. The PSP itself can also be modified by instructors as desired to better suit their goals for the course.

Acknowledgments

The development of this project has been partially supported by the Transforming Instruction in Undergraduate Mathematics via Primary Historical Sources (TRIUMPHS) Project with funding from the National Science Foundation’s Improving Undergraduate STEM Education Program under Grant Number 1523494. Any opinions, findings, conclusions or recommendations expressed in this project are those of the author and do not necessarily represent the views of the National Science Foundation.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License (https://creativecommons.org/licenses/by-sa/4.0/legalcode). It allows re-distribution and re-use of a licensed work on the conditions that the creator is appropriately credited and that any derivative work is made available under “the same, similar or a compatible license”.

For more information about the NSF-funded project TRansforming Instruction in Undergraduate Mathematics via Primary Historical Sources (TRIUMPHS), visit

http://webpages.ursinus.edu/nscoville/TRIUMPHS.html
Background Information: The goals of this two-page reading and tasks assigned in this guide are to familiarize students with the definition and examples of the two sequences that define the arithmetic-geometric mean in order to prepare them for in-class small group work on Tasks 3 – 5.

Reading Assignment - Gaussian Guesswork: Sequences and the Arithmetic-Geometric Mean - pp. 1 – 3

1. Read the introduction on page 1.
 Any questions or comments?

2. In Section 1, read pages 1 – 2.
 Any questions or comments?

3. Class Prep Complete Task 1 from page 3 here:

 Task 1 This task examines Example 1 from Gauss’ paper.
 (a) Verify that the values given by Gauss in the previous excerpt are correct. Are you able to use your calculator to obtain the same degree of accuracy (21 decimal places!) that Gauss obtained by hand calculations?

 (b) Write three observations about the two sequences in this example.
 Use a full sentence to state each of your observations.
Task 2 In Example 2 from his paper, Gauss set $a = 1, \ b = 0.6$.

(a) Use a calculator or computer to compute the next four terms of each sequence.

\[a = 1.0000000000000000 \quad b = 0.6000000000000000 \]

\[a_1 = \quad b_1 = \]

\[a_2 = \quad b_2 = \]

\[a_3 = \quad b_3 = \]

\[a_4 = \quad b_4 = \]

(b) In Task 1, part (b), you made three observations about Gauss’ Example 1. Do the same general patterns hold for Example 2? If so, why do you think this is? If not, in what way(s) are the two examples different?