
Ursinus College
Digital Commons @ Ursinus College

Mathematics and Computer Science Faculty
Publications Mathematics and Computer Science Department

5-2012

Incorporating the NSF/TCPP Curriculum
Recommendations in a Liberal Arts Setting
Akshaye Dhawan
Ursinus College, adhawan@ursinus.edu

Follow this and additional works at: https://digitalcommons.ursinus.edu/math_comp_fac

Part of the Theory and Algorithms Commons
Click here to let us know how access to this document benefits you.

This Conference Proceeding is brought to you for free and open access by the Mathematics and Computer Science Department at Digital Commons @
Ursinus College. It has been accepted for inclusion in Mathematics and Computer Science Faculty Publications by an authorized administrator of
Digital Commons @ Ursinus College. For more information, please contact aprock@ursinus.edu.

Recommended Citation
Dhawan, Akshaye, "Incorporating the NSF/TCPP Curriculum Recommendations in a Liberal Arts Setting" (2012). Mathematics and
Computer Science Faculty Publications. 3.
https://digitalcommons.ursinus.edu/math_comp_fac/3

http://ursinus.edu?utm_source=digitalcommons.ursinus.edu%2Fmath_comp_fac%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ursinus.edu?utm_source=digitalcommons.ursinus.edu%2Fmath_comp_fac%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.ursinus.edu?utm_source=digitalcommons.ursinus.edu%2Fmath_comp_fac%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.ursinus.edu/math_comp_fac?utm_source=digitalcommons.ursinus.edu%2Fmath_comp_fac%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.ursinus.edu/math_comp_fac?utm_source=digitalcommons.ursinus.edu%2Fmath_comp_fac%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.ursinus.edu/math_comp?utm_source=digitalcommons.ursinus.edu%2Fmath_comp_fac%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.ursinus.edu/math_comp_fac?utm_source=digitalcommons.ursinus.edu%2Fmath_comp_fac%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/151?utm_source=digitalcommons.ursinus.edu%2Fmath_comp_fac%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ursinus.co1.qualtrics.com/jfe/form/SV_1RIyfqzdxsWfMQ5
https://digitalcommons.ursinus.edu/math_comp_fac/3?utm_source=digitalcommons.ursinus.edu%2Fmath_comp_fac%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:aprock@ursinus.edu


Incorporating the NSF/TCPP Curriculum Recommendations in a Liberal Arts
Setting

Akshaye Dhawan
Department of Computer Science

Ursinus College
Collegeville, PA

adhawan@ursinus.edu

Abstract—This paper 1examines the integration of the
NSF/TCPP Core Curriculum Recommendations in a liberal
arts undergraduate setting. We examine how parallel and
distributed computing concepts can be incorporated across
the breadth of the undergraduate curriculum. As a model of
such an integration, changes are proposed to Data Structures
and Design and Analysis of Algorithms. These changes were
implemented in Design and Analysis of Algorithms and the
results were compared to previous iterations of that course
taught by the same instructor. The student feedback received
shows that the introduction of these topics made the course
more engaging and conveyed an adequate introduction to this
material.

Keywords-Distributed Computing; Parallel Processing; Cur-
riculum development;

I. INTRODUCTION

This paper examines the integration of the NSF/TCPP
Core Curriculum Recommendations in an undergraduate
liberal arts setting. In addition to examining how the ideas
presented here can be incorporated into the existing Liberal
Arts Model Curriculum guidelines provided by the 2007
report of the Liberal Arts Computer Science Consortium
(LACS) [1], we also examine and evaluate the adoption of
these ideas in one course of the undergraduate curriculum
at Ursinus College and present the planned future adoption
of these ideas in another course of the undergraduate cur-
riculum.

In the first phase of this implementation, Design and
Analysis of Algorithms was modified to introduce Parallel
and Distributed Computing Concepts (PDC). In the second
phase, a similar modification is proposed to Data Structures.
Both of these are presented in this paper. The results show
that the modified Algorithms course was extremely well
received by students and the introduction of these topics
made the course relevant. For the purpose of comparison,
student feedback was compared to the unmodified version
of the same course taught by the same instructor.

The remainder of this paper is as follows. Section II
provides some background to the liberal arts model of higher

1This work was supported by the NSF-TCPP Early Adopters Fall 2011
program

education and the role of computer science in the liberal
arts. Section III presents the undergraduate curriculum in
computer science at Ursinus College. In Section IV we
introduce our proposed changes to Data Structures and
Design and Analysis of Algorithms. Section V examines
the student feedback for the changed course. Finally, we
conclude in Section VI.

II. COMPUTER SCIENCE AND THE LIBERAL ARTS

A liberal arts curriculum aims at developing intellectual
capabilities through a breadth of educational experiences
that encourage the pursuit of knowledge. Historically, the
seven liberal arts were grammar, rhetoric and logic (the
trivium) and geometry, arithmetic, music, and astronomy
(the quadrivium). Over time this model of education has
evolved. As practiced in American colleges today, liberal
arts is often described as the study of three core divisions:

• the humanities (literature, language, philosophy, the
fine arts, and history),

• the sciences (biology, chemistry, computer science,
mathematics, physics) ,

• the social sciences (politics, economics, sociology)
It is worth noting that computer science is placed in the

middle category and indeed primarily evolved from Mathe-
matics Departments in the liberal arts setting. Computer Sci-
ence is of increasing relevance to the liberal arts curriculum
for much the same reasons that Mathematics was originally
a part of the core of liberal studies. A working knowledge of
computer science is now a requirement for students in most
disciplines of the sciences and even in the social sciences.
Indeed this is reflected in the science curriculum at Ursinus.
Introduction to Computer Science (CS 173) is required of
all Mathematics and Physics majors and recommended for
Biology and Neuroscience majors at Ursinus. Also, a new
course titled In Silico: Experimental science via Computer
Science (CS 170) is planned for the Fall 2012 and is to be
taught by the author. CS 173 consists of an object oriented
introduction to computer science and uses Java. CS 170 on
the other hand uses a general purpose language like Python
and has the students build programs that analyze big data and
carry out simulations on problems drawn from a number of



disciplines like Biology, Chemistry, Physics, Geographical
Information Systems, Medical Imaging and Business.

In addition to covering disciplinary material, liberal arts
programs in computer science emphasize some larger con-
cepts. Three general-purpose capabilities that are fundamen-
tal characteristics of a liberal arts education are the ability
to organize and synthesize ideas, the ability to reason, and
the ability to communicate ideas to others. The design, im-
plementation, and analysis of algorithms and data structures
uses and develops all three of these capabilities. This liberal
arts emphasis on broader concepts that are not tied to specific
languages, architectures or operating systems is very much
in line with the broader spirit of the recommendations stated
in the NSF/TCPP Curriculum Initiative [2].

According to LACS, a key component of any liberal
arts perspective to computer science should include multiple
problem-solving paradigms. However, they acknowledge the
difficulty of doing this effectively within existing curriculum
requirements. This is where we believe that the NSF/TCPP
curriculum suggestions can play a role. They allow for the
introduction of parallelism as a problem-solving paradigm
through the introduction of key ideas across the breath
of the curriculum. Our approach to this integration of the
NSF/TCPP curriculum with the LACS Liberal Arts Curricu-
lum requires no additional courses to be offered. Instead, it
challenges instructors to rework existing courses to introduce
these ideas often as a supplement to existing material.
We strongly believe that a key skill that undergraduate
computer science students (particular those in the liberal
arts) should have is that of being able to break down and
design solutions to a problem in more than one paradigm.
However, the tension emerges from the acknowledgment
that in a liberal arts setting, a typical computer science
curriculum [1] consists of:

• Computer Science courses - about 30%
• Mathematics courses - about 10%
• Science courses - about 10%
• Humanities, Social Sciences and Languages - about

50%
What this means in very real terms is that there is little

room for adding new requirements to the computer science
major. Hence, the inclusion of key concepts of parallel
and distributed computing must necessarily come through
a reworking of these ideas into existing courses of the
curriculum.

In the next section we provide a broader introduction to
the Computer Science curriculum at Ursinus College.

III. THE COMPUTER SCIENCE CURRICULUM AT
URSINUS

The computer science curriculum at Ursinus is fairly
representative of a typical liberal arts program in computer
science. In order to major in computer science there are four
required core courses (Introduction to Programming, Data

Structures, Architecture, Algorithms), any one of two theory
courses (Theory of Computation, Programming Languages)
and four other electives one of which must be a capstone
course (Software Engineering, Operating Systems, Com-
puter Networks, Databases, Graphics, Artificial Intelligence
and High Performance Distributed Computing). Currently,
the only course that explores parallel and distributed comput-
ing in some detail is the elective CS-478 High Performance
Distributed Computing. Additionally, a CS 0 course in
Greenfoot [3] (Computer Science for the liberal arts) is
offered to non-majors in the arts and humanities and the CS
170 course targeted to the experimental science mentioned
in Section II is offered to students in the

CS-478 High Performance Distributed Computing is typ-
ical of elective courses on parallel and high performance
computing and focuses on teaching methods in parallel
computation on a variety of parallel architectures including
multicore, cluster and grid computers. In addition to theoret-
ical concepts like work, cost, Amdahl’s law etc., the course
also covers programming using MPI and Open-MP. Over the
course of the semester, the students typically work on four
involved projects that require understanding the nuances of
designing and implementing software that takes advantage
of a parallel system. However, the main shortcomings of this
course is that not all majors take it since it is offered every
other year and is an elective.

IV. ADOPTION OF THE NSF/TCPP CURRICULUM

We believe that it is important to continue offering an
elective that is focused on parallel computation like CS-
478. However, given recent trends in the widespread use of
multicore processors, GPU’s, cloud computing and clusters
it is essential that every computer science major have an
introduction to the key ideas behind parallel and distributed
computing. This can be achieved by introducing these ideas
earlier in the curriculum via two core courses - Data
Structures and Design and Analysis of Algorithms. By
incorporating these changes into core courses, we can ensure
that parallel computing as a problem solving paradigm and
indeed as a way of thought is introduced earlier in the
curriculum. This may also serve to ameliorate the difficulty
some students have in moving to a parallel approach to
problem solving after spending years being trained to break
problems down iteratively in a serial model.

We will now outline specific changes to the two courses.
The author has taught CS 174 Data Structures in Spring
2010, Fall 2010 and Spring 2011 and CS 371 Design and
Analysis of Algorithms in Fall 2009, Fall 2010 and Fall
2011. The changes being proposed were incorporated into Cs
371 Design and Analysis of Algorithms in the Fall of 2001.
We will also be incorporating the proposed changes into CS
174 in the Fall of 2012 but some of the ideas are presented
here. For prospective adopters who question the time con-
straints that the introduction of these topics may impose to



Table I
DEFINITION OF LEARNING LEVELS FROM BLOOM’S TAXONOMY [7]

Learning Level Abbreviation Definition

Knowledge K Student recalls or recognizes information, ideas, and principles in the approximate form in which they were learned.
Comprehension C Student translates, comprehends, or interprets information based on prior learning.
Application A Student selects, transfers, and uses data and principles to complete a problem or task with a minimum of direction.

the schedule of these classes, the hope is that these changes
can be introduced as a supplement to existing topics and by
streamlining the time spent in discussing certain topics. It
is also worth pointing out that as a pilot we are introducing
these ideas in only two courses but such an adoption can be
made across the curriculum in a number of different courses
including Computer Architecture, Programming Languages
and Operating Systems [2].

A. Data Structures

CS 174 Data Structures is our standard CS II course and
represents the second course in the major for most students.
This course is a great candidate for introducing the shared
memory model of parallel computation and for introducing
thread level parallelism. We believe that by focusing on
threading as the primary means to expose the student to
parallelism, the instructor can teach basic techniques and
problems like concurrency control. This is essential because
a typical CS-II course does not usually allow the time
needed to introduce the novice programmer to MPI, PVM
or Open-MP. Introducing threads and concurrency control
early in the curriculum will also allow for a more thorough
discussion of these concepts in upper-level systems courses
like Operating Systems. Additionally, all students have had
Java by this point in our curriculum and threading in Java
can be introduced without much effort. This is relevant since
Data Structures is a core course that already introduces
several important concepts.

For the proposed changes, we used the Bloom’s Tax-
onomy for learning outcomes [4], [5]. Additionally, [6]
provides an introduction to using Bloom’s Taxonomy in
Technology courses. The changes proposed target different
learning objectives. The changes impacted three primary
learning levels - Knowledge (K), Comprehension (C) and
Application (A). These are defined in Table I.

The topics proposed to be included along with their
Bloom Number [7], [4] and Learning Outcomes are shown
in Table II. As can be seen from the table an introduction
to basic models of the shared memory model and speedup
were presented and threading was used to illustrate these
ideas. This was also used to show problems like concurrency
control and race conditions.

B. Design and Analysis of Algorithms

CS 371 Design and Analysis of Algorithms is also a core
course required of all majors. This course is typically taken

by students in the fall semester of their junior or senior year
before they may take the elective CS 478 High Performance
Distributed Computing in the spring. The course is an ideal
candidate for introducing parallelism in more detail since
the material in the course lends itself well to a discussion
of speedup and the comparison between parallel and serial
algorithms. We propose introducing these ideas through
studying parallel versions of algorithms (like Merge Sort,
Matrix Multiply) whose serial versions are already a part of
the course.

In the Fall of 2011, the course was revised to introduce
parallel methods. The topics included along with their
Bloom Number [7] and Learning Outcomes are shown in
Table III.

In this class, the PRAM model was presented as a
theoretical construct. The students were introduced to shared
memory and message passing models and some basic analy-
sis of time complexity was presented for parallel algorithms.
An effective approach that emerged as the class went on was
that of presenting a parallelized approach to a serial solution
they had already seen. Merge Sort was used for this purpose
and was presented with a thorough analysis and pseudo-
code. This seemed to make a real impact on students and
drove home to the power of effective parallelization.

V. EVALUATION

As a first measure of evaluating the success of these
redesigned courses in conveying key concepts of parallel and
distributed computing to students we compare anonymous
end-of-semester student evaluations for CS 371 Design and
Analysis of Algorithms in Fall 2011 to the unmodified
version of this course offered in Fall 2010 and Fall 2009.
Note that all three classes were taught by the author. In
addition to these evaluation surveys, an independent teaching
observer was also used every other class in CS 371 during
Fall 2011. Also, it will be worth looking at the performance
of these students in the High Performance Computing course
as explained in Section VI. We are in the process of
collecting this data during Spring 2012.

The results of these student surveys are present in Table
IV. The response rates were 77% for Fall 2009, 85% for
Fall 2010 and 90% for Fall 2011. For the questions below,
the students were asked to respond on a scale of 1 to 5 with
1 being the best possible score. The table shows the means
scores in the survey. Additionally, they had the option of
providing comments some of which are reproduced below



Table II
TOPICS PROPOSED FOR INCLUSION IN DATA STRUCTURES

Topic Bloom # Learning Outcome

Recursion C/A Show independent subproblems in recursion tree eg. Fibonacci
Shared memory K/C Basic model, speedup discussion
Threads A Creation, dynamic multithreading, spawn, sync operations
Concurrency Control A Illustrate race conditions, need for synchronization

Table III
TOPICS INCLUDED IN ALGORITHMS

Topic Bloom # Learning Outcome

Asymptotics A Introduce parallel time/space complexity vs. serial
Speedup C Experiment with timing, discuss measuring speedup, trade offs
Task Graphs C Introduce decomposition, dependencies and pipelines
Divide and conquer A Merge Sort, Naive multithreaded and Strassen’s matrix multiply
Sorting A Parallel Merge Sort with analysis and recurrence relation

Table IV
STUDENT SURVEY SUMMARY FOR DESIGN AND ANALYSIS OF ALGORITHMS

Question Fall 2011 Fall 2010 Fall 2009

Did the course increase your knowledge or skills in the subject area? 1.11 1.17 1.29
Clarity of presentation of the material 1.1 1.17 1.57
On average, how many hours do you estimate you have spent on this class outside the classroom per week? 5-7 5-7 3-5

for the modified course. Note that in every measure the
modified course was better received by students. Also, these
changes came with a similar time commitmment requirement
from students.

Student comments from the modified class include the
following:

The use of current topics and examples made this
class very interesting.
I learned a great deal in this class. It was a tough
and important class and I learned a lot.
Discussion of real world applications made this
class relevant.
Gave us a practiced understanding of the material.

Additionally, an independent consultant who observed the
modified class had the following comments on a class where
parallel algorithms were introduced using Merge Sort as
an example. The teaching consultant was trained and used
the methods detailed in [8], [9]. The consultant was made
available through the Teaching and Learning Initiative at
Ursinus College funded by the Mellon Foundation [10].

Introducing Moore’s Law and its limits was ef-
fective. This is interesting and students seem very
engaged by the topic. Pretty much everyone has
their notebooks out and is paying attention.
Since a lot of students are familiar with mobile de-
vices, using them to introduce parallel computing
is a good real-world example of the topic.

You use real-world examples such as writing a
book and painting a fence as examples of why
using multiple processors to solve a problem isn’t
always the best way. This is a good way to
illustrate the point. I like your use of the projector
during these examples.
You used a lot of really interesting real-world
examples to illustrate the topic you’re teaching.
Students seemed really engaged in today’s class.

VI. CONCLUSION AND FUTURE WORK

It is our sincere hope that this paper presents evidence
that in addition to offering an upper level course in Parallel
and Distributed Computing (PDC), modifying lower level
courses in the undergraduate computer science curriculum
can be an effective way of introducing these concepts to a
wider audience. Student responses show that these changes
made these courses more relevant and interesting to students.

In order to evaluate the impact of the proposed changes,
we are collecting, synthesizing and interpreting information
about student understanding, reasoning and practical skills
for students who have taken the modified Data Structures
and Algorithms sequence before taking CS 478 High Per-
formance Distributed Computing and comparing their per-
formance in this course to that of students who have not
had this prior introduction to parallelism. Data collected
will include in-class feedback, performance on assignments



and programming tasks and midterm/end of semester student
evaluations. CS 478 is currently being offered in the Spring
2012.

REFERENCES

[1] 2007 report of the Liberal Arts Com-
puter Science Consortium (LACS),
http://cs.wellesley.edu/ pmetaxas/LACS2007report.pdf

[2] NSF/TCPP Curriculum Initiative,
http://www.cs.gsu.edu/ tcpp/curriculum/sites/default/files/NSF-
TCPP-curriculum-Dec23.pdf

[3] Greenfoot, http://www.greenfoot.org/door

[4] Bloom, B. S., Engelhart, M. D., Furst, E. J., Hill, W. H.,
Krathwohl, D. R. (1956). Taxonomy of educational objectives:
the classification of educational goals; Handbook I: Cognitive
Domain New York, Longmans, Green, 1956.

[5] Anderson, L.W., Krathwohl (Eds.). (2001). A Taxonomy for
Learning, Teaching, and Assessing: A Revision of Bloom’s
Taxonomy of Educational Objectives. New York: Longman

[6] Forehand, M. (2005). Bloom’s taxonomy: Original and re-
vised.. In M. Orey (Ed.), Emerging perspectives on learning,
teaching, and technology.

[7] Bloom’s Taxonomy,
http://www.edpsycinteractive.org/topics/cogsys/bloom.html

[8] Derek Bo Center for Teaching and Learning, Harvard Univer-
sity,
http://isites.harvard.edu/icb/icb.do?
keyword=k1985&pageid=icb.page29735

[9] Bryn Mawr Teaching and Learning Initiative,
http://www.brynmawr.edu/tli/

[10] The Andrew Mellon Foundation,
http://www.mellon.org/


	Ursinus College
	Digital Commons @ Ursinus College
	5-2012

	Incorporating the NSF/TCPP Curriculum Recommendations in a Liberal Arts Setting
	Akshaye Dhawan
	Recommended Citation


	Introduction
	Computer Science and the Liberal Arts
	The Computer Science Curriculum at Ursinus
	Adoption of the NSF/TCPP Curriculum
	Data Structures
	Design and Analysis of Algorithms

	Evaluation
	Conclusion and Future Work
	References

