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Abstract

In an experiment performed by our collaborators at Bryn Mawr, we excite

rubidium-85 to a coherent superposition of the different |mj| splittings of the 37d5/2

state induced by a small electric field. After waiting for some variable delay time,

apply a time-dependent electric field to ionize the atom and record the ionized cur-

rent that arrives at the detector. Due to the initial superposition, we observe an

interference pattern that depends on the delay time. This thesis describes my con-

tinued work with Dr. Carroll to develop a computational model of this experiment.

Our initial method of determining the current involved a semi-classical approach

that did not accurately describe the phase, so the more recent developments in more

work have focused on including the continuum states in our calculation.

iii
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Chapter 1

Introduction

1.1 Introduction

A Rydberg atom is an atom whose outermost electron has been excited to a state

with a large principal quantum number n. These atoms strike a balance between the

simplicity of their description and providing opportunities for interesting physics.

When one is only interested in the outermost electron, a Rydberg atom can be

thought of as an exaggerated hydrogen atom, as the Rydberg electron is localized

far away from the positive core that is comprised of the nucleus and inner electrons.

These atoms are a strong candidate for use in quantum control or low temperature

experiments, since they have a large dipole moment that makes them very sensitive

to applied fields.

Selective-field ionization is a routinely used experimental technique that uses a

time-dependent electric field to selectively ionize particular states. However, the

quantum dynamics of an electron in a time-dependent electric field are rich and

interesting in their own right. As the electric field is varied, the electron goes through

many avoided crossings and will quickly become a complex superposition. Stoneman

et al. [1] have used techniques from photo-ionization to probe this behavior. This

behavior is a particular instance of the more general phenomenon of non-adiabatic

1



2 CHAPTER 1. INTRODUCTION

transitions. One can perform interferometry with these avoided crossings, and this

has been used to observe a geometric phase in superconducting qubits [2]. This has

also been to detect error in qubits that arise from interactions with the environment

that spoil the coherence of the qubit [3].

1.2 Experiment

This work is focused on the computational modeling of an experiment performed

by our collaborators at Bryn Mawr [4]. Our purpose was to probe the behavior

of Rydberg atoms in response to a time-dependent electric field. In particular, we

did so by exciting a Rydberg atom in a coherent superposition of nearly degenerate

states, used an electric field to ionize the Rydberg state, and then analyzed the

resulting ionization current. The timing diagram that shows the steps and their

timescales is shown in Fig. 1.1. In our experiment, we chose to work with rubidium-

85. We started by cooling the rubidium gas in a magneto-optical trap (MOT) to

200 µK.

Excite AtomsCool ("Trap") Atoms Wait (Delay Time)Ionize Atoms

0.0 0.5 1.0 1.5 2.0 2.5

Time H ΜsL
Figure 1.1: Timing diagram for the ionization experiment. The delay time is a
variable.

We chose to work with the 37d5/2 state, that is, n = 37, l = 3, and j = 5/2.

A static electric field was applied to break the degeneracy of the mj = 1/2, 3/2,

and 5/2 energy levels. The excitation scheme is achieved in three steps. The
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5s1/2 → 5p3/2 transition is driven by the MOT’s trapping lasers, which have a

wavelength of 780 nm. The next step is the 5p3/2 → 5d5/2 transition. This is

achieved by pulsing a 776 nm for 10 µs at a rate of 20 pulses/seconds. After this

step, some of the atoms will decay via 5d5/2 → 6p3/2. After the end of the 776

nm pulse, we apply a 1019 nm laser in a short pulse to induce the 6p3/2 → 37d5/2

transition. Since the pulse is localized in time, it has some width. This width is

large enough so that the final excitation is a coherent superposition of all three |mj|

states. The volume occupied by the excited atoms is the region where the 776 nm

and 1019 nm lasers overlap, and this was chosen to coincide with the zero of the

MOT’s magnetic field.

After preparing the Rydberg atoms, we wait for some variable delay time and

then apply our ionization pulse. Since the degeneracy of the |mj| components is

broken, the delay time allows the components of the superposition to accrue relative

phases. The ionizing field pulse is nearly linear in time. As the field increases, the

amplitude will disperse through many states due to the couplings between different

energy levels; the state will be a complicated superposition near the classical ioniza-

tion threshold. Since the ionization threshold is energy dependent, different states

will ionize at different times, so we expect our ionization current to be extended in

time. However, if parts of the different |mj| components ionize at the same time,

their relative phases will create an interference pattern as a function of the delay

time.





Chapter 2

Avoided Crossings and
Non-adiabatic Transitions

2.1 A Toy Model

In the Stark effect, a uniform electric field is applied to an atom. The presence

of this field couples different eigenstates together by producing off-diagonal terms

in the Hamiltonian. As the electric field is varied, the energies of the states will

vary, as per standard perturbation theory [5]. If two states are coupled by this

perturbation, those energy levels will never cross, that is, they will never have the

same energy at a given electric field. Furthermore, if we produce a Stark map that

shows the bound energies as a function of the electric field, we will see that the

energies of coupled states that approach each other will deflect away from each

other before intersecting; this is called an avoided crossing. In this section, we will

cover a simple, two-state model to illustrate the effect of adding a perturbation to

a Hamiltonian and show that off-diagonal couplings lead to avoided crossings.

We will consider a simplified model that illustrates these phenomena. Suppose

5



6CHAPTER 2. AVOIDED CROSSINGS ANDNON-ADIABATIC TRANSITIONS

that we have some initial, unperturbed Hamiltonian H0 given by

H0 = εσz =

ε 0

0 −ε

 , (2.1)

where ε is a real number. The energies of the unperturbed system are clearly ±ε.

We can generally ignore multiples of the identity matrix; these merely shift the

energy levels by a constant since they commute with everything.

Now we will consider adding a perturbation Hp to create a new Hamiltonian

H = H0 + Hp. Ignoring multiples of the identity, the most general Hermitian

perturbation has the form

Hp = ασx + βσy + ∆εσz =

 ∆ε α− iβ

α + iβ −∆ε

 ,
for real numbers α, β, and ∆ε. For convenience, we will define ε′ = ε + ∆ε, so our

perturbed Hamiltonian is

H = ασx + βσy + ε′σz =

 ε′ α− iβ

α + iβ −ε′

 . (2.2)

It is a straightforward exercise in linear algebra [6, 7] to show that the eigenvalues

of this matrix are

E± = ±
√

(ε′)2 + α2 + β2.

If any two of the parameters ε′, α, or β are zero, and we plot the spectrum as a

function of the third parameter, we will find a crossing. In this case, it turns out that

the Hamiltonian can be cast into the form of our unperturbed Hamiltonian in Eq.
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2.1 without coupling. Our unperturbed Hamiltonian had no off-diagonal couplings,

which are necessary to observe avoided crossings. In light of these considerations,

we will take one of them to be non-zero. If we choose to plot the spectrum as a

function of β, then the sum (ε′)2+α2 is strictly positive. I have plotted the spectrum

of our perturbed Hamiltonian in Fig. 2.1. The vertical axis indicates the energy,

while the horizontal axis indicates the value of β. The red lines show the spectrum

for (ε′)2 + α2 = 0, while the black lines show the spectrum for (ε′)2 + α2 > 0. As I

argued earlier, we do see that the red lines cross, while the black lines deflect away

from each other, as we would expect at an avoided crossing.

Perturbation

E
n
e
rg
y

Figure 2.1: Spectrum of the perturbed Hamiltonian as a function of one of the
perturbing parameters. The red lines correspond to the case where both of the
other parameters are zero, while at least one of the other parameters is non-zero
for the black lines.
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2.2 Non-Adiabatic Transitions

In our work, we will concern ourselves with the dynamics of an electron that moves

through a large number of avoided crossings due to a time-dependent perturbation;

the purpose of this section is to give an understanding of this behavior. This will be

achieved by considering some extreme, but analytically tractable, cases and mov-

ing on to discuss a more accurate treatment. In the case that the perturbation

is changed arbitrarily slow, one may intuitively believe that the electron stays in

the same state. This intuition can be proven, and this is the content of the adia-

batic theorem [8]. To put things precisely, suppose that we have a time-dependent

Hamiltonian H(t) whose eigenstates are labeled by some quantum number n:

H(t) |ψn(t)〉 = En(t) |ψn(t)〉 .

A general state is a superposition of these states, and we will denote the coefficients

for each of the states by cn(t). If the time-dependent term in H(t) is turned on at

t = 0, then the adiabatic theorem states that

|cn(t)|2 = |cn(0)|2,

for all time t and each n. Although there are a host of interesting phenomena in the

adiabatic limit, such as geometric phases, and it is nice that we can rigorously justify

our intuition, the dynamics of the amplitude in this limit are entirely uninteresting;

nothing changes!

The other extreme example occurs when the Hamiltonian changes very quickly.

In this case, the dynamics are more subtle. For simplicity, consider a two-state
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system. If the two states do not couple, that is, there are no non-zero off-diagonal

matrix elements for all times t, then the probability of finding the particle in either

state is constant. The situation where the two states do couple together is more

involved. This case was worked out by Rubbmark et al.; I will not reproduce the

calculation here, but the curious reader is encouraged to read their paper [9]. In

their model, the energies of the system are linear when the off-diagonal matrix

elements are neglected and the perturbation is varied linearly as a function of time.

If the system was in one state at t = −∞, then the probability of finding it in the

other state at t = +∞ is given by the Landau-Zener formula

P = exp

(
− 2π

| 〈1|V |2〉 |2

|dω/dt|

)
, (2.3)

where 〈1|V |2〉 is the off-diagonal matrix element and dω/dt is difference in the rates

of change for the energies when the off-diagonal elements are neglected. It is helpful

to study some limiting cases of this formula. In the case where the perturbation is

changed slowly, dω/dt tends to 0 and the transition probability tends to 0 as well.

This result seems reasonable, as the conditions are precisely those that satisfy the

adiabatic theorem. We find a more surprising consequence in the other limit. As

|dω/dt| becomes arbitrarily large, we find that the transition probability approaches

1 and the particle will be always be found in the other state! Although the only

formula only describes asymptotic behavior, one can regard the amplitude as being

transferred between the states at the avoided crossing, as transitions do not occur

in the absence of couplings. Indeed, more direct calculations show that most of the

amplitude is transferred near the avoided crossing.

Of course, experimentally accessible situations fall somewhere between these

two extremes. We can’t change a quantity by an infinitely large amount, and
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changing a quantity by an arbitrarily small amount is a bit of an oxymoron. In

our experiment, we observed transitions between states, so the adiabatic theorem

is inapplicable. However, the Landau-Zener formula is too specific and limited to

be applied to our situation, as we violate most of the assumptions that went into

the model. There are certainly more than two accessible states in an atom. In

deriving the formula, they assumed that the states only participate in one avoided

crossing and deflect away from each other. We will find that pairs of states can

have numerous avoided crossings with each other. The Landau-Zener formula is

an asymptotic result, and it is unclear how applicable this is to an experiment

where we have finite time scales, especially when keeping the fact that states have

numerous avoided crossings in mind. The final nail in the coffin for the relevance

of the Landau-Zener formula to our work is the fact that we observe interference

patterns in our experiment. The Landau-Zener formula describes probabilities, not

probability amplitudes, and does not maintain any phase information. The surefire

way to keep the phase information and make sure that we get the right amplitudes

after moving through an avoided crossing is to directly integrate the Schrodinger

equation (cite forre). In the next chapter, we will discuss the techniques used to

compute this time-evolution for Rydberg atom in the presence of a time-dependent

electric field.



Chapter 3

Traversing the Stark Map

When an electric field is applied to an atom, this adds a perturbation to the Hamil-

tonian and shifts the energy levels. We can construct a plot of the energy spectrum

against the electric fields strength to produce a diagram called a Stark map. In the

first section of the chapter, we will discuss how to calculate the matrix elements of

our Hamiltonian. Once we know the structure of the energy levels, we can use this

to determine the time evolution of an arbitrary state. In our earlier work, we did

not include the continuum states, so ionization had to be accounted for manually.

At the end of the chapter, we will discuss the semi-classical methods used to obtain

the ionization current and compare them with our experimental findings.

3.1 The Stark Effect

In order to construct a Stark map, we need to determine the matrix elements of

our Hamiltonian. First, we will ignore the electric field term. In the absence of

external fields, the states are described well by a hydrogen spectrum modified by

quantum defects and fine structure. When one works with hydrogen and ignores

fine structure, it is possible and convenient to work with the quantum numbers n, l,

s, ml, and ms, where n is the principal quantum number, l and s are the orbital and

11



12 CHAPTER 3. TRAVERSING THE STARK MAP

spin angular momentum quantum numbers respectively (s = 1/2 for an electron, we

will omit this in some places), and ml and ms is are the projections of these angular

momentum onto the z-axis. However, when we include the fine structure, spin-orbit

coupling necessitates working with the total angular momentum directly [5]. The

total angular momentum operator J is related to the orbital L and spin S angular

momentum operators by the relation J = L + S. This means that we need to work

with new quantum numbers, namely, the total angular momentum j, which ranges

from |l − s| when the orbital and spin angular momenta are oriented in opposite

directions to l+s when they point in the same direction (so |l−s| ≤ j ≤ l+s), and

its projection mj = ml + ms onto the z-axis. One can incorporate fine structure

into the description of Rydberg states in the same way used for hydrogen. We will

not deal with this here, as the details of this calculation are discussed in many

textbooks on quantum mechanics [5]. It is worth mentioning that, as long as fine

structure is ignored, the |n, l, s,ml,ms〉 and |n, l, s, j,mj〉 bases both diagonalize the

Hamiltonian. The initial Hamiltonian has eigenvalues

H0 |n, l, j,mj〉 = − RH

(n− δl)2
|n, l, j,mj〉 ,

where RH is the Rydberg constant in energy units (13.6 eV) and δl is the quantum

defect due to the extended nature of the core [10]. One can expand the quantum

defects in a series

δl = δl,0 +
δl,2

(n− δl,0)2
+

δl,4
(n− δl,0)4

+
δl,6

(n− δl,0)6
...

and determine the coefficients from fitting experimental data. We used this expan-

sion and the results from a number of experimental papers [11–13] in our calculation.
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It follows that the matrix elements for the unperturbed electron-core interaction are

〈n′, l′, j′,m′j′ |H0|n, l, j,mj〉 = − RH

(n− δl)2
δn,n′δl,l′δj,j′δmj ,m′

j′
. (3.1)

Now, we will determine the matrix elements that arise from the electric field.

We will take our field F to point along the z-axis. Up to an additive constant,

this introduces a scalar potential −Fz = −Fr cos θ, which amounts to a potential

energy term of the form V = eFr cos θ. When computing the matrix elements, it is

convenient to do so in the decoupled basis. When working with coupled momenta,

the coupled and decoupled bases are generally related via

|l, s, j,mj〉 =
l∑

ml=−l

s∑
ms=−s

|l, s,ml,ms〉 〈l, s,ml,ms|l, s, j,mj〉 ,

where the coefficients are referred to as Clebsch-Gordon coefficients [5]. Using the

fact that s = 1/2 in our case gives

|l, 1/2, j,mj〉 =
∑

ml=mj∓1/2

|l, 1/2,ml,mj −ml〉 〈l, 1/2,ml,ml −ml|l, 1/2, j,mj〉 ,

(3.2)

since we have mj = ml +ms. We can write our matrix elements as

〈n′, l′, j′,m′j′ |V |n, l, j,mj〉 = eF
∑

m′=m′
j′∓1/2

∑
m=mj∓1/2

〈l′, j′,m′j′|l′,m′,m′j′ −m′〉

× 〈l,m,mj −m|l, j,mj〉 〈n′, l′,m′,m′j′ −m′|r cos θ|n, l,m,mj −m〉 .
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The radial and angular integrals are decoupled, so we may write

〈n′, l′, j′,m′j′ |V |n, l, j,mj〉 = eF
∑

m′=m′
j′∓1/2

∑
m=mj∓1/2

〈l′, j′,m′j′|l′,m′,m′j′ −m′〉

× 〈l,m,mj −m|l, j,mj〉 〈l′,m′,m′j′ −m′| cos θ|l,m,mj −m〉 〈n′, l′|r|n, l〉 .

The angular term is directly computed in Arfken and Weber [14]

〈l′,m′,m′j′ −m′| cos θ|l,m,mj −m〉 = δm,m′δmj−m,m′
j′−m

′

×

(
δl′,l+1

√
(l −m+ 1)(l +m+ 1)

(2l + 1)(2l + 3)
+ δl′,l−1

√
(l −m)(l +m)

(2l − 1)(2l + 1)

)
.

Using this identity and the fact that δm,m′δmj−m,m′
j′−m

′ = δmj ,m′
j′
δmj−m,m′

j′−m
′ finally

gives

〈n′, l′, j′,m′j′ |V |n, l, j,mj〉 = eFδmj ,m′
j′
〈n′, l′|r|n, l〉

×
∑

m=mj∓1/2

〈l′, j′,m′j′ |l′,m,mj −m〉 〈l,m,mj −m|l, j,mj〉

×

(
δl′,l+1

√
(l −m+ 1)(l +m+ 1)

(2l + 1)(2l + 3)
+ δl′,l−1

√
(l −m)(l +m)

(2l − 1)(2l + 1)

)
. (3.3)

The sum in Eq. 3.3 is straightforward to evaluate, the remaining work lies within

computing the radial term

〈n′, l′|r|n, l〉 =

∫ ∞
0

r3R∗n′,l′(r)Rn,l(r)dr.

We will determine the matrix elements by numerical integration. First, we must

construct the solutions to the radial equation for a given set of quantum numbers.
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Since the amplitude for a Rydberg state is localized far from the core, we can use

hydrogenic solutions and maintain accuracy. It is useful to work in atomic units

here to eliminate all units for computational purposes. In these units, the radial

equation for hydrogen in a uniform electric field takes the form

d2R

dr2
+

2

r

dR

dr
+ 2(E + r−1)R− l(l + 1)

r2
R = 0.

If we introduce the quantities x = ln r and X =
√
rR, we find that

d2X

dx2
= g(x)X, (3.4)

where g(x) = (l+ 1/2)2 + 2(E+ e−x)e2x [15]. The benefit of using Eq. 3.4 is that it

is in the standard form for using the Numerov method. We discretize our variable

as rj = rstarte
−jh, where j is the step number and h is the step size. In this case, we

are performing integration inward beginning at rstart and X is determined by the

Numerov algorithm

Xj+1 =
Xj−1(gj−1 − 12/h2) +Xj(10gj + 24/h2)

12/h2 − gj+1

.

In these units, the classical turning point for an electron with energy −n−2 is at

r = n2. We expect the wave function to decay exponentially beyond this radius, so

we begin our integration beyond this point, typical values are rstart ∼ 2n2. In order

to determine X, we need to choose some initial conditions to start the algorithm.

We used X0 = 10−10 and X1 = 10−5, but the integration is fairly insensitive to these

quantities. Once we have determined our two functions X and X ′ corresponding to
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n, l and n′, l′ respectively, we can calculate the matrix element

〈n′, l′|r|n, l〉 =

∑
j X

′
jXjr

3
j√

(
∑

j X
2
j r

2
j )(
∑

j X
′2
j r

2
j )
, (3.5)

where we have used the fact that dr = −hr and the fact that the wave functions

are real.

3.2 Stark Maps and Time Evolution

Now that we have determined the matrix elements of our Hamiltonian, we can

calculate the spectrum and build Stark maps. In practice, we cannot diagonalize an

infinite matrix with a computer, so we have to truncate it. If we make the matrix

too large, we can’t diagonalize it efficiently. We saw that the Stark effect couples

different energy levels together. If the matrix is too small, we will ignore too many

of these couplings and our spectrum will be inaccurate. We will return to address

these concerns.

A sample Stark map is shown in Fig. 3.1. Note that both of the matrix elements

in Eqs. 3.1 and 3.3 have a factor of δmj ,m′
j′

. This means that different mj values

are decoupled from each other. One can also show that these matrix elements

only depend on the absolute value |mj|, so it makes sense to consider the subset of

eigenvalues corresponding to a particular |mj| value. In the Stark map shown here,

we are looking at a subset of the spectrum for |mj| = 1/2 for 85Rb. Notice that

the value of the allowed energies is clearly dependent on the value of the electric

field and that the states participate in a large number of avoided crossings. The

states that appear to diverge from a single point are called manifold states and have

large angular momentum values, usually l ≥ 3. The Stark map shows the n = 43
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and n = 44 manifolds as well as the s, p, d states of larger n that lie between them.

In practice, we find that including between 7 to 10 manifolds above and below the

states of interest produces optimal results.
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Figure 3.1: Stark map for the |mj | = 1/2 states of 85Rb. The n = 43, 44
manifolds are shown with the s, p, d states of larger n that lie between them. Note
that the energies depend on the electric field and that each state participates in
a large number of avoided crossings.

Now we will concern ourselves with the time-dependence of the problem. In our

experiment, the electric field is a linear function of time. Although this changing

electric field induces a magnetic field, we find that magnetic effects are negligible,

so we will neglect them. One can determine the time evolution of a state |ψ(t)〉 by

applying the time evolution operator [5]

|ψ(tf )〉 = U(ti, tf ) |ψ(ti)〉 ,
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where the time evolution operator is related to the Hamiltonian by

U(ti, tf ) = exp

(
− i

~

∫ tf

ti

H(t)dt

)
.

In our model, we broke the time evolution up into small steps ∆t and assumed that

the Hamiltonian was nearly constant over this time step. We replaced the integral

with a left-hand Riemann sum, giving

U(tj, tj + ∆t) = exp

(
− i

~
H(tj)∆t

)
.

Computing the exponential of a matrix is difficult when it is not diagonal, so we

will cast the Hamiltonian into this form. Our matrix elements are constructed using

hydrogen orbitals, that is, the eigenfunctions at zero electric field. We define Λ(tj)

to be the change of basis matrix that sends the zero field basis to the eigenbasis

for the electric field at tj. In this case, we can relate the constructed Hamiltonian

H(tj) to the diagonalized Hamiltonian HD(tj) by

H(tj) = Λ†(tj)HD(tj)Λ(tj),

where the dagger indicates the adjoint, or conjugate transpose. This expression can

be used to simplify the time evolution operator

U(tj, tj + ∆t) = Λ†(tj) exp

(
− i

~
HD(tj)∆t

)
Λ(tj). (3.6)

This is much easier to calculate, as the exponential of a diagonal matrix is a diagonal

matrix whose elements are the exponentials of the elements on the diagonal of the

initial matrix. Given some initial state |ψ(0)〉, we can determine it at any time n∆t
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using the identity

|ψ(n∆t)〉 =

(
n−1∏
j=0

U(j∆t, (j + 1)∆t)

)
|ψ(0)〉 ,

where this follows from the fact that U(t3, t2)U(t2, t1) = U(t3, t1).

We applied this to our initial superposition of the |mj| states that formed from

the Stark splitting of the 37d5/2 level. A portion of the Stark map and the probability

of finding the electron in a state at a given field are shown in Fig. 3.2. This Stark

map superposes the maps for the different |mj| values. The probability of finding

the electron in a state increases with the intensity of the color of the lines, and

the |mj| = 1/2, |mj| = 3/2, and the |mj| = 5/2 states correspond to red, blue,

and green respectively. Notice that as the time and field increases, the probability

is transferred to many other states, as the intensity of the colors decreases as you

move to higher fields.

The black line in Fig. 3.2 is the classical ionization threshold. It is given by the

formula

E = −6.12
√
F ,

where E is the energy in cm−1 and F is the electric field in V/cm [16]. A classical

electron would be ionized if its energy was larger than the energy determined by

the previous formula. It is a fairly good indicator of when ionization becomes

important. This curve illustrates that all states are not ionized at the same time;

higher energy states are ionized more readily than lower energy states. Therefore,

we expect that our ionized current that arrives at the detector will be a distribution

with some spread in time. Another important feature is that lines with different

colors intersect the ionization threshold near the same field value. This means that
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Figure 3.2: Portion of the Stark map where the initial state was a superposi-
tion of the different |mj | components of the 37d5/2 state. Red, blue, and green
correspond to |mj | = 1/2, 3/2, and 5/2 respectively. The intensity of the color
scales with the probability of finding the electron in that state. The black curve
is the classical ionization threshold.

different |mj| components, with different phases, will ionize at the same time, so we

expect to see some sort of interference at the detector.

3.3 The Semi-classical Ionization Current

In this section, we will discuss how we have extracted the ionization current from

our quantum state near the ionization threshold. We use a semi-empirical formula
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for the ionization rates derived by Damburg and Kolosov [17]

Γ =
(4R)2n2+m+1

n3n2!(n2 +m)!

× exp

[
− 2

3
R− 1

4
n3F

(
34n2

2 + 34n2m+ 46n2 + 7m2 + 23m+
53

3

)]
, (3.7)

where R = (−2E0)
3/2/F . In this expression, n, n1, n2, and m are the parabolic

quantum numbers, E0 is the energy of the state, and F is the electric field. The

energy of the state in parabolic coordinates was determined from fourth order per-

turbation theory. To express things in parabolic coordinates, we use Eq. 3.2 to move

from the basis with coupled angular momenta to decoupled angular momenta. We

can convert the decoupled basis to the parabolic basis by inverting the transforma-

tion given by Gallagher [10]

|n, n1, n2,m〉 =
∑
l

〈n, l,m|n, n1, n2,m〉 |n, l,m〉 , (3.8)

where the coefficient is

〈n, l,m|n, n1, n2,m〉 = (−1)1−n+m+n1−n2

×
√

2l + 1

 n−1
2

n−1
2

l

m+n1−n2

2
m−n1+n2

2
−m

 . (3.9)

The term with six elements in parentheses is the Wigner 3-j symbol.

This ionization rate can be used to construct an ionization probability. The

process of ionizing and the ionization rate is similar to the process of nuclear decay

and decay rates. If we carry this reasoning to its conclusion, then the ionization

rate is the inverse of the lifetime of the state. In this case, the probability of ionizing
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per unit time goes as exp(−Γt). If we begin at t = 0, normalization tells us that

the probability of ionizing per unit time is

Ṗ (t) = Γ exp(−Γt).

Now we will integrate this to find the probability of ionizing after some small time

∆t. We can approximate this with a single left-hand Riemann sum to deduce

that the ionization probability is Γ∆t. We multiplied each amplitude in parabolic

coordinates by
√

Γ∆t and
√

1− Γ∆t and stored the quantities separately. We

computed the squared modulus of the first product and summed them over all of

the parabolic coordinates to determine the ionization current at the given time. To

make the current continuous, we multiplied each point by a gaussian distribution.

We used the second product as the new amplitude, as we have subtracted off the

part that has ionized. With this procedure, we cannot take the first products, add

them, and then square them, as we could have destructive interference while the

normalization of the state vector definitely decreases.

In Fig. 3.3, we have shown the experimental current (a) and the current pro-

duced by our model (b). The colored regions are unrelated to the different |mj|

values and indicate the regions that will be gated, or integrated over. There is a

qualitative similarity between the current, but they are not identical, so we cannot

use the same gates for the two spectra. We integrated each of the gates and plotted

their area as a function of the delay time. The results for the experimental and

theoretical currents are shown in Fig. 3.4 (a) and (b) respectively. Note that the

red and blue lines are completely out of phase in (a), while this is not the case in

(b). This suggests that we are not handling the phase correctly near ionization.
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Figure 3.3: Experimental (a) and theoretical (b) ionization currents as functions
of time. The colors here are unrelated to those in Fig. 3.2.
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Figure 3.4: (a,b) Area under the regions in Fig. 3.3 (a,b) (respectively) as a
function of the delay time. The color of the curves corresponds to the region that
is integrated. In (a), the red and blue are completely out of phase, while this is
not the case in (b).





Chapter 4

Including the Continuum States

In the previous chapter, we saw that we were getting the phase near ionization

incorrect. There are a few problems with the approach that we have taken so far.

First, our previous method of obtaining the ionization current is semi-classical and it

is not clear if this approach deals with phase appropriately. A more serious problem

is the fact that we are not including all of the relevant states and couplings to the

system, so our phase near ionization is wrong because our energies near ionization

are wrong.

In particular, we are ignoring the continuum, or free, states. These states have a

continuous spectrum that goes from 0 to +∞. To see that we should include these

states, consider the relevant energies, shown in Fig. 4.1. The bound atomic states

have some negative energy E, shown in red. The particle is always bound by the

Coulomb potential energy VC , shown in blue. Near the nucleus or core, we will have

E > VC . As we move away from the core, we find that E < VC , even in the limit

as we go to infinity, so the particle is permanently bound.

Applying an electric field introduces another potential energy term VE that

changes things. The sum of the potentials VC + VE is unbounded below as one

moves to infinity in one direction. We can always find a region where E > VC + VE

that extends out to infinity, so we see that an initially bound particle can always

25
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tunnel through the potential barrier and escape to infinity. This process is known

as tunnel ionization, and it is the mechanism responsible for ionizing our atoms.

We see that, in the presence of a uniform electric field, there are no permanently

bound atomic states. Since our wave functions need to be able to escape to infinity

and this possibility is not captured by using bound states at zero field, we need to

include the coupling to the free states.

z

E
n
e
rg
y

Figure 4.1: Potentials for an attractive Coulomb interaction and a uniform
electric field with x = y = 0. Since the sum of the potentials is unbounded below
as one goes to infinity, there are no permanently bound states.

4.1 Hypergeometric Functions

In this section, we will discuss the essential results from the theory of hypergeometric

functions. The hydrogenic continuum states are easily expressed in terms of these

functions. Additionally, there is a closed form for the integrals that occur when

describing the coupling of continuum and bound states that is also expressed in

terms of these functions. The hypergeometric functions converge slowly, and having
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this closed form avoids many errors that may be introduced by approximating the

function and integrating numerically out to infinity.

Before defining the hypergeometric functions, it is convenient to introduce the

Pochhammer symbols (α)k for any complex α and positive integer k. These are

defined as

(α)k = (α)(α + 1)...(α + (k − 1))

=
k−1∏
j=0

(α + j). (4.1)

The second formulation provides a natural setting to generalize the symbols to

include the case k = 0. A product is said to be empty whenever the lower index is

larger than the upper index. The empty product is defined to be 1, so it is natural

to take (α)0 = 1. It is clear that the symbols satisfy the identity

(α)k+1 = (α)k(α + k). (4.2)

Suppose we have two finite collections of complex numbers of size p and q, say

{a1, ..., ap} and {b1, ..., bq} respectively. The generalized hypergeometric function

pFq is defined as

pFq(a1, ..., ap; b1, ..., bq; z) =
∞∑
n=0

∏p
j=1(aj)n

n!
∏q

k=1(bk)n
zn, (4.3)

where z is any complex number. Under complex conjugation, note that the hyper-

geometric function satisfies the identity

pFq(a1, ..., ap; b1, ..., bq; z)∗ = pFq(a
∗
1, ..., a

∗
p; b
∗
1, ..., b

∗
q; z
∗).
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There are two particular cases that will be of interest to us. The first is the confluent

hypergeometric function in the case that p = q = 1, and the second is the ordinary

hypergeometric function in the case that p = 2 and q = 1.

4.1.1 The Confluent Hypergeometric Equation

The confluent hypergeometric functions have a close connection with the confluent

hypergeometric equation:

x
d2u

dx2
+ (c− x)

du

dx
− au = 0. (4.4)

This is a second-order, linear, ordinary differential equation, so, for fixed a and

c, the solution space is two dimensional. As the name suggests, the two linearly

independent solutions are easily expressed in terms of the confluent hypergeometric

functions. As a first attempt at a solution, we posit a series solution:

u(x) =
∞∑
n=0

anx
n+s,

for some fixed number s. Substituting the series into the differential equation and

demanding consistency implies that s = 0 or s = 1 − c. One can use this to show

that the most general solution is

u(x) = A1F1(a; c;x) +Bx1−c1F1(1 + a− c; 2− c;x), (4.5)

where A and B are arbitrary constants. It turns out that the radial equation that

describes the energy spectrum of a hydrogen-like atom can be cast into the form

of Eq. 4.4. Once we reduce the radial equation to this form, we can immediately
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determine the eigenfunctions since it has been reduced to a solved problem.

4.2 Hydrogenic Continuum States

In this section, we will derive the form of continuum states and discuss how to incor-

porate the bound-continuum and continuum-continuum coupling into the existing

framework. We will assume that the continuum states correspond to the continuum

states for rubidium. Besides having an exact result for rubidium, this seems to be

the closest approximation. We do not expect the interaction of the bound electrons

to alter the continuum states much, as the continuum states are not square inte-

grable and are more likely to be found far away from the nucleus. This is also a

better model than using some other states, say those for the harmonic oscillator,

instead.

We will begin by mimicking a standard derivation for the bound eigenfunctions of

hydrogen as found in a standard quantum mechanics textbook [5]. The derivations

have most of the steps in common, but some of the arguments have to be modified,

as the continuum states are not square integrable. The radial equation for hydrogen

is

d

dr

(
r2
dR

dr

)
− 2m

~

(
− e2

4πε0r
+

~2l(l + 1)

2mr2
− E

)
R = 0. (4.6)

If we choose to work with E > 0, we can define the following unitless coordinates

λ =
e2

4πε0~

√
m

−2E
ρ =

r

~
√
−8mE,
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and use this to re-express the hydrogen Hamiltonian in Eq. 4.6 in the form

d2R

dρ2
+

2

ρ

dR

dρ
+
(λ
ρ
− l(l + 1)

ρ2
− 1

4

)
R = 0. (4.7)

Note that our unitless coordinates are undefined when E = 0. There are some

subtleties involved here, but they are not relevant for our purposes. We will address

this point later, but it is not a relevant problem.

Now we will study the limiting behavior of the solutions to this differential

equation. First, we will study the behavior ρ becomes arbitrarily small. In this case,

we keep the derivatives and the term with the largest power of ρ in the denominator,

so Eq. 4.7 approximately becomes

d2R

dρ2
+

2

ρ

dR

dρ
− l(l + 1)

ρ2
R = 0.

There are two solutions to this differential equation: ρl and ρ−(l+1). We now argue

that this second solution should be rejected. First, we deal with the case of l > 0.

The modulus of the radial part of the wave function goes as r−2l−2 near the origin.

Since the volume element is r2dr, our radial integrand is at least r−2. We expect

a finite probability of finding the electron in a closed and bounded region of space

(think of locating a particle in a plane wave state inside of a cube). This is not

integrable in the limit as r → 0, so we must reject this solution. Now we deal with

the case where l = 0. In this case, the limiting differential equation for r is

0 =
d2r−1

dr2
+

2

r

dr−1

dr
= ∇2r−1.

However, it is well-known that the Laplacian of 1/r is proportional to a Dirac delta
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function, which is not zero [18]. Therefore, the limiting behavior as ρ tends to zero

must be ρl.

In the bound state case, we know that the wave functions vanish at infinity, and

this gives another constraint. However, we cannot impose an analogous boundary

condition on the continuum states. Nonetheless, it is still convenient to factor the

radial wave function for the continuum states in the same way as the bound states.

Without loss of generality, we can write

R(ρ) = ρle−ρ/2w(ρ),

where w is some undetermined function whose lowest order of ρ is a non-zero con-

stant; one may regard this as defining w. When working with bound states, the

exponential in this factoring was decaying, but in this case, it is oscillating. Substi-

tuting this factorization into Eq. 4.7 gives the differential equation

ρ
d2w

dρ2
+ (2l + 2− ρ)

dw

dρ
− (1 + l − λ)w = 0.

Looking back at Eq. 4.4, we see that this has precisely the same form as the

confluent hypergeometric equation! We make the identifications a = 1 + l − λ and

c = 2l + 2. Looking back at the most general solution in Eq. 4.5, the coefficient

for the second solution must be zero, as this term has additional powers of ρ that

do not obey the required small ρ behavior. It follows that the solutions can be

expressed as

R(ρ) = Aρle−ρ/21F1(1 + l − λ, 2l + 2, ρ),

for some constant A. Note that these modified arguments apply to the bound states

as well, as we have not explicitly used the fact that E > 0. If we choose to study the
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bound states, we get another boundary condition at infinity. When this condition

is imposed, we find that the confluent hypergeometric function coincides with the

associated Laguerre polynomials. Turning our attention to the continuum states

with E > 0, we can determine A by requiring that the continuum eigenfunctions

are delta-normalized, that is,

∫
ψ∗E′(~r)ψE(~r)dV = δ(E − E ′).

This calculation was performed by Ugray and Shiell [19], and they determined that

the radial component of the delta-normalized continuum eigenfunctions was

RE,l(r) =

√
2
∏l

s=0(1 + Es2/RH)

(1− exp(−π
√

4RH/E))RHa30

(2r/a0)
l

(2l + 1)!
exp

(
ir

a0

√
E

RH

)

× 1F1

(
l + 1− i

√
RH

E
, 2l + 2,−2i

ir

a0

√
E

RH

)
, (4.8)

where a0 is the Bohr radius and RH is the Rydberg constant in energy units.

4.3 Coupling to the Continuum

Now that we have determined the continuum eigenfunctions, the next task is to

calculate their coupling to the bound states and other continuum states. It is clear

that we need bound-continuum coupling in order for ionization process to occur

without artificially subtracting a rate. One can view the addition of the continuum

states as adding some positive energy levels to the Stark map. Their coupling to the

bound states will drive them towards the bound states. If we neglect continuum-

continuum coupling, the continuum states will only have one avoided crossing with
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the bound states, deflect towards positive energy, and never return. There are two

problems with this. Since an electron ionizes when it transitions to a continuum

state, we need to keep the continuum near the bound states to ensure that we have

the proper coupling and amplitude transferred to the continuum. The energies of our

bound states are incorrect near the ionization threshold, and they will only receive

a small correction if they interact with the continuum once. In order to ensure that

we get these energies and the phase correct, we need to keep the continuum near

the bound states.

The matrix elements depend on the computation of the radial term. Since the

solutions are products of confluent hypergeometric functions, powers of the radius,

and exponential functions, it suffices to determine integrals of the form

Js,pc (a, a′) =

∫ ∞
0

e−hrrc−1+s1F1(a; c; kr)1F1(a
′; c− p; k′r)dr. (4.9)

Karule [20] determined this integral in the case where s and p are positive integers

and <(h) > 0. This relations hold when one of the states is a bound state. She

found that the integrals could be expressed in closed form

Js,pc (a, a′) = Γ(c+ s)h−c−s(1− k′/h)−a
′
(1− k/h)−a

s+p∑
m=0

[
(a′)m(−s− p)m(k′)m

(c− p)m(k′ − h)mm!

×
s+m∑
r=0

(a)r(−s−m)rk
r

(c)r(k − h)rr!
2F1

(
a+ r, a′ +m; c+ r;

−4kk′

(k′ − k)2

)]
. (4.10)

This can be used to determine the bound-continuum coupling, but the assumptions

that went into deriving this fail for continuum-continuum coupling.





Chapter 5

Future Work

First, I need to do some further work to turn this project into a computationally

feasible task. There is a method proposed by Cowan [21] that discusses modeling

the continuum by discrete chunks. This involves integrating the continuum states

and the matrix elements over some width in the energy spectrum ∆E. The effect

of this will be to add new bands to the Stark map.

The implementation discussed only describes bound-continuum coupling. The

next step forward is to include continuum-continuum coupling for the reasons that

I have discussed. The straightforward calculation of these quantities is challenging,

as one can make simple arguments to show that this coupling is divergent. If this

is the case, then I will try to perform the integration procedure, as I expect this to

smooth out the divergences. Once I have determined how to include the continuum-

continuum coupling and model the continuum as discrete states, the final step will

be to test the implementation and determine the optimal number of orbital angular

momentum states that need to be included, as well as the total width and resolution

∆E of the continuum states.

35





Bibliography

[1] R. C. Stoneman, D. S. Thomson, and T. F. Gallagher. Microwave multi-

photon transitions between Rydberg states of potassium. Physical Review A,

37(5):1527–1540, March 1988.

[2] Xinsheng Tan, Dan-Wei Zhang, Zhentao Zhang, Yang Yu, Siyuan Han, and

Shi-Liang Zhu. Demonstration of Geometric Landau-Zener Interferometry in a

Superconducting Qubit. Physical Review Letters, 112(2):027001, January 2014.

[3] Y. P. Zhong, Z. L. Wang, J. M. Martinis, A. N. Cleland, A. N. Korotkov, and

H. Wang. Reducing the impact of intrinsic dissipation in a superconducting

circuit by quantum error detection. Nature Communications, 5:3135, January

2014.

[4] Rachel Feynman, Jacob Hollingsworth, Michael Vennettilli, Tamas Budner,

Ryan Zmiewski, Donald P. Fahey, Thomas J. Carroll, and Michael W. Noel.

Quantum interference in the field ionization of Rydberg atoms. Physical Review

A, 92(4):043412, October 2015.

[5] Mark Beck. Quantum Mechanics: Theory and Experiment. Oxford University

Press, New York, 1st edition, May 2012.

[6] Stephen H. Friedberg, Arnold J. Insel, and Lawrence E. Spence. Linear Algebra.

Pearson, Upper Saddle River, N.J, 4th edition, November 2002.

37



38 BIBLIOGRAPHY

[7] David C. Lay. Linear Algebra and Its Applications. Pearson, Boston, 4th

edition, January 2011.

[8] Leslie E. Ballentine. Quantum Mechanics: A Modern Development. World

Scientific, 1998.

[9] Jan R. Rubbmark, Michael M. Kash, Michael G. Littman, and Daniel Klepp-

ner. Dynamical effects at avoided level crossings: A study of the Landau-Zener

effect using Rydberg atoms. Physical Review A, 23(6):3107–3117, June 1981.

[10] Thomas F. Gallagher. Rydberg Atoms. Cambridge University Press, Cam-

bridge, New York, 1st edition, November 2005.

[11] K. Afrousheh, P. Bohlouli-Zanjani, J. A. Petrus, and J. D. D. Martin. Deter-

mination of the $ˆ{85}\mathrm{Rb}$ $ng$-series quantum defect by electric-

field-induced resonant energy transfer between cold Rydberg atoms. Physical

Review A, 74(6):062712, December 2006.

[12] M. F{\”o}rre and J. P. Hansen. Selective-field-ionization dynamics of a lithium

$m=2$ Rydberg state: Landau-Zener model versus quantal approach. Physical

Review A, 67(5):053402, May 2003.

[13] Jianing Han, Yasir Jamil, D. V. L. Norum, Paul J. Tanner, and T. F. Gal-

lagher. Rb $nf$ quantum defects from millimeter-wave spectroscopy of cold

$ˆ{85}\mathrm{Rb}$ Rydberg atoms. Physical Review A, 74(5):054502,

November 2006.

[14] George B. Arfken, Hans J. Weber, and Frank E. Harris. Mathematical Methods

for Physicists, Seventh Edition: A Comprehensive Guide. Academic Press,

Amsterdam ; Boston, 7 edition edition, January 2012.



BIBLIOGRAPHY 39

[15] Myron L. Zimmerman, Michael G. Littman, Michael M. Kash, and Daniel

Kleppner. Stark structure of the Rydberg states of alkali-metal atoms. Physical

Review A, 20(6):2251–2275, December 1979.

[16] F. Robicheaux, C. Wesdorp, and L. D. Noordam. Selective field ionization in Li

and Rb: Theory and experiment. Physical Review A, 62(4):043404, September

2000.

[17] R. J. Damburg and V. V. Kolosov. A hydrogen atom in a uniform electric field.

III. Journal of Physics B: Atomic and Molecular Physics, 12(16):2637, 1979.

[18] Paul Adrien Maurice Dirac. The Principles of Quantum Mechanics. Clarendon

Press, January 1981.

[19] Lisa Madeleine Ugray and Ralph C. Shiell. Elucidating Fermi’s Golden Rule

via bound-to-bound transitions in a confined hydrogen atom. arXiv:1206.2905

[physics], June 2012. arXiv: 1206.2905.

[20] E. Karule. Integrals of two confluent hypergeometric functions. Journal of

Physics A: Mathematical and General, 23(11):1969, 1990.

[21] Robert D. Cowan. The Theory of Atomic Structure and Spectra. University of

California Press, Berkeley, September 1981.

[22] James B. Seaborn. Hypergeometric Functions and Their Applications. Springer,

New York, softcover reprint of the original 1991 1st edition, September 2011.

[23] Hans A. Bethe and Edwin E. Salpeter. Quantum Mechanics of One- And

Two-Electron Atoms. Martino Fine Books, Mineola (NY), 2014 reprint of 1957

edition, April 2014.



40 BIBLIOGRAPHY

[24] Clarence Zener. Non-Adiabatic Crossing of Energy Levels. Proceedings of the

Royal Society of London A: Mathematical, Physical and Engineering Sciences,

137(833):696–702, September 1932.

[25] Ryan Murray. Tunnel Ionization in Strong Fields in atoms and molecules and

its applications.

[26] Immanuel Bloch. Ultracold quantum gases in optical lattices. Nature Physics,

1(1):23–30, October 2005.

[27] Nasser Saad and Richard L. Hall. Integrals containing confluent hypergeometric

functions with applications to perturbed singular potentials. Journal of Physics

A: Mathematical and General, 36(28):7771, 2003.

[28] Wenhui Li, I. Mourachko, M. W. Noel, and T. F. Gallagher. Millimeter-wave

spectroscopy of cold Rb Rydberg atoms in a magneto-optical trap: Quantum

defects of the \textit{ns} , \textit{np} , and \textit{nd} series. Physical Re-

view A, 67(5):052502, May 2003.

[29] John S. Townsend. A Modern Approach to Quantum Mechanics. Univ Science

Books, Sausalito, Calif, 2 edition, February 2012.

[30] John S. Townsend. Quantum Physics: A Fundamental Approach to Modern

Physics. University Science Books, 2010.


	Ursinus College
	Digital Commons @ Ursinus College
	4-25-2016

	The Role of Continuum States in the Field Ionization of Rydberg Atoms
	Michael P. Vennettilli
	Recommended Citation


	tmp.1461616303.pdf.26LqS

