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One of the key challenges in Wireless Sensor Networks (WSNs) is that of extending the life-
time of the network while meeting some coverage requirements. In this paper, we present
a distributed algorithmic framework to enable sensors to determine their sleep-sense cycles
based on specific coverage goals. The framework is based on our earlier work on the target
coverage problem. We give a general version of the framework that can be used to solve
network/graph optimization problems for which melding compatible neighboring local solu-
tions directly yields globally feasible solutions such as the maximal independent set problem.
We also apply this framework to several variations of the coverage problem, namely, target
coverage, area coverage and k-coverage problems, to demonstrate its general applicability.
Each sensor constructs minimal cover sets for its local coverage objective. The framework
entails each sensor prioritizing these local cover sets and then negotiating with its neighbors
for satisfying mutual constraints. We employ a dependency graph model that can capture
the interdependencies among the cover sets. Detailed simulations are carried out to further
demonstrate the resulting performance improvements and effectiveness of the framework.
These show an improvement of between 10%-20% over existing algorithms.

Keywords: wireless sensor networks, scheduling, energy efficiency, maximum lifetime,
distributed algorithms, localized algorithms, maximum independent set

1. Introduction

Wireless sensor networks (WSNs) have attracted a lot of recent research interest
due to their applicability in security, monitoring, disaster relief and environmental
applications. WSNs consist of a number of low-cost sensors scattered in a geograph-
ical area of interest and connected by a radio interface. Sensors gather information
about the monitored area and send this information to gateway nodes [2].

In order to keep their cost low, the sensors are equipped with limited energy and
computational resources. The energy supply is typically in the form of a battery
and once the battery is exhausted, the sensor is considered to be dead. To ensure
that the area or targets of interest can be covered, sensors are usually deployed
in large numbers by randomly dropping them in a region [20]. Such a deployment
scheme gives rise to an overlap in the monitoring regions of individual sensors.

A simplistic approach to meeting the coverage objective would be to turn on all
sensors after deployment. But this needlessly reduces the lifetime of the network
since the overlap between monitoring regions implies that not all sensors need to
be on at the same time. In order to extend the lifetime of a sensor network while
maintaining coverage, a minimal subset of the deployed sensors are kept active
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while the other sensors can enter a low power sleep state. The ratio of the energy
consumed in the active versus sleep states can be as much as several orders of
magnitude [22]. In order to share the load, through some form of scheduling, this
active subset changes over time until there are no more such subsets available to
satisfy the coverage goal. In using such a scheme to extend the lifetime, the problem
is two fold. First, we need to select these minimal subsets of sensors. Then there
is the problem of scheduling them wherein, we need to determine how long to use
a given set and which set to use next. For an arbitrarily large network, there are
exponential number of possible subsets making the problem intractable and it has
been shown to be NP-complete in [8, 13].

Existing centralized and distributed heuristics for arriving at a lifetime extending
schedule are discussed in Section 2. Centralized solutions like those in [8, 21] are
based on assuming that the entire network structure is known at one node (typically
the gateway node), which then computes the schedule for the network. The schedule
is often computed using linear programming based algorithms. Like any centralized
scheme, it suffers from the problems of scalability, single point of failure and lack of
robustness. The later is particularly relevant in the context of sensor networks since
sensor nodes are deployed in hostile environments and are liable to failure. Existing
distributed solutions in [4, 5, 23] work by having a sensor exchange information
with its neighbors (limited to k-hops, where k is usually 1 or 2). These algorithms
use information like targets covered and battery available at each sensor to greedily
decide which sensors remain on. This happens in rounds so the set of active sensors
is periodically reshuffled. The problem with these algorithms is that they use simple
greedy criteria to make their decision and do not efficiently take into account the
problem structure.

In [18] we focused on the target coverage problem and presented distributed

algorithms for scheduling the sensors to extend the lifetime. We used the idea
of constructing local cover sets consisting of sensors that can cover local targets.
Since certain cover sets are better than others, we presented a Lifetime Dependency
Graph model that enabled us to use some properties of this graph in order to
prioritize these covers. We also showed how other existing algorithms like [4, 5] can
be modeled by variations in the prioritizing scheme. We carried out simulations to
show improvements of 10-20% over LBP [4] and similar performance to DEEPS
[5] which is a 2-hop algorithm. A 2-hop version of our algorithm outperformed
DEEPS [5].
Our Contributions ': We realize that the scheme of creating local solutions
and modeling their dependencies applies to various other problems besides tar-
get coverage. In general, for certain graph and network problems where solving
the problem locally implies that a globally feasible solution can be reached, our
framework can be used (See Section 3). In this paper we use the solution in [18] to
develop a framework and show its application to the area coverage and k-coverage
problems besides showing how the target coverage solution fits into this generalized
framework. We also illustrate the use of the framework in a more general context
by applying it to the problem of finding an independent set in a distributed envi-
ronment. The key points of the framework include construction of local solutions,
modeling the dependency between the local solutions using a dependency graph,
prioritizing the interdependent local solutions using a priority function that can
utilize the dependency graph and negotiating with neighbors to arrive at a mutually
satisfactory local solution.

I This paper is an extended version of [12]. We generalize the concepts introduced in [18].
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Our overall framework is a two phase distributed meta-algorithm. The first phase
is the setup phase for each node to construct prioritized local solutions. The second
phase is the rounds of negotiation phase during which each node chooses its best
local solution compatible with its neighbors. Employing the framework entails the
following;:

verifying the applicability of the framework,

modeling the state space of local solutions and their interdependencies using a

dependency graph structure,

e heuristically modeling the priority of local solutions based on the properties of
the dependency graph structure, and

e determining the logistics of negotiating with neighbors to settle on mutually-

compatible and high-priority local solutions.

The remainder of this paper is organized as follows. In section 3 we introduce
the generic framework, its steps and the problems to which it applies. In section 4
we develop a coverage-problem specific framework. Section 5 discusses the solution
of the three different coverage problems area, target and k-coverage within the de-
veloped framework for coverage problems. In Section 6 we evaluate our algorithms
against those of [4, 5]. Section 2 surveys previous work on the lifetime for coverage
problem. Finally, we conclude in Section 7.

2. Background Literature

2.1 Problem Statement

The lifetime problem can be stated as follows. Given a monitored region R, a set
of sensors S and a set of targets 7', find a monitoring schedule for these sensors
such that

e the total time of the schedule is maximized,
e all targets are constantly monitored, and
e no sensor is in the schedule for longer than its initially battery.

2.2 Related Work

In this section, we briefly survey existing approaches to maximizing the lifetime of
sensor networks, while meeting certain coverage objectives. [7] gives a more detailed
survey on the various coverage problems and the scheduling mechanisms they use.
[19] also surveys the coverage problem along with other algorithmic problems rel-
evant to sensor networks. We end this section by focusing on two algorithms, LBP
[4] and DEEPS [5], since we use them for comparisons against our algorithms in
Section 6.

The maximum lifetime coverage problem has been shown to be NP-complete
in [1, 8]. Initial approaches to the problem in [1, 8, 21] considered the problem
of finding the maximum number of disjoint cover sets of sensors. This allowed
each cover to be used independently of others. However, [3, 6] and others showed
that using non-disjoint covers allows the lifetime to be extended further and this
approach has been adopted since.

Broadly speaking, the existing work in this category can be classified into two
parts - Centralized Algorithms and Distributed Algorithms. For centralized ap-
proaches, the assumption is that a single node (usually the base station) has access
to the entire network information and can use this to compute a schedule that is
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Table 1. Centralized Algorithms
Name Area/Target | Disjoint | Main Idea
Abrams, Goel [1] Area Yes Greedy: Max uncovered area
Meguerdichian [17] | Area No Integer Linear Program
Cardei [8] Target Yes Mixed Integer Programming
Shah [3] Area Yes LP, Garg Kénemann
Cardei [6] Target No Integer Linear Program
Table 2. Distributed Algorithms
Name Area/Target | Disjoint | Main Idea
Sliepcivic [21] Area Yes Greedy: Max uncovered fields
Tian [23] Area No Geometric calculation of sponsored
area
PEAS [25] Area No Probing based determination of spon-
sored area
CCP [24] Area No Random timers to evaluate coverage
requirements
OGDC [26] Area No Random back off node volunteering
Lu [16] Area No Highest overall denomination sensor
picks
Abrams [1] Area Yes Randomized, Greedy picks max uncov-
ered area
Cardei et al. [6] | Target No Sensor with highest contribution to
bottleneck
LBP [4] Target No Targets are covered by higher energy
nodes
DEEPS [5] Target No Minimize energy consumption for bot-
tleneck target

then uploaded to individual nodes. Distributed Algorithms work on the premise
that a sensor can exchange information with its neighbors within a fixed number
of hops and use this to make scheduling decisions. We now look at the individual
algorithms in both these areas.

A common approach taken with centralized algorithms is that of formulating the
problem as an optimization problem and using linear programming (LP) to solve it
[3, 8, 11, 17]. [17] formulates the area coverage problem using a Integer LP and relax
it to obtain a solution. In order to solve the target coverage problem, [8] considers
the disjoint cover set approach. Modeling their solution as a Mixed Integer Program
shows an improvement over [21]. [3] formulates a packing LP for the coverage
problem. Using the (1 + €¢) Garg-Koénemann approximation algorithm [14], they
provide a (1 + €)(1 + 2Inn) approximation of the problem. A similar problem is
solved by us for sensors with adjustable ranges in [11]. A different algorithm to
work with disjoint sets is given in [9]. Disjoint cover sets are constructed using a
graph coloring based algorithm that has area coverage lapses of about 5%. [1] also
gives a centralized greedy algorithm that picks sensors based the largest uncovered
area.

The distributed algorithms in the literature can be further classified into greedy,
randomized and other techniques. The greedy algorithms [1, 4-6, 16, 21] all share
the common property of picking the set of active sensors greedily based on some
criteria. [21] considers the area coverage problem and introduces the notion of a
field as the set of points that are covered by the same set of sensors. The basic
approach behind the picking of a sensor is to first pick the one that covers that
largest number of previously uncovered fields and to then avoid including more
than one sensor that covers a sparsely covered field. [1] builds on this work and
presents three algorithms that solve variations of the set k-cover problem. The
greedy heuristic they propose works by selecting the sensor that covers the largest
uncovered area. [16] defines the sensing denomination of a sensor as its contribution,
i.e., the area left uncovered when the sensor is removed. Sensors with higher sensing
denomination have a higher probability of remaining active.

[3] gives a distributed algorithm based on using the faces of the graph. If all the
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faces that a sensor covers are covered by other sensors with higher battery that are
in an active or deciding state, then a sensor can switch off (sleep). Their work has
been extended to target coverage in the load balancing protocol (LBP).

Some distributed algorithms use randomized techniques. Both OGDC [26] and
CCP [24] deal with the problem of integrating coverage and connectivity. They
show that if the communication range is at least twice the sensing range, a covered
network is also connected. [26] uses a random back off for each node to make nodes
volunteer to be the start node. [24] sets a random timer for each node following
which a node evaluates its current state based on the coverage by its neighbors.
[1] also present a randomized algorithm that assigns a sensor to a cover chosen
uniformly at random.

A different approach has been taken in PEAS [23, 25]. PEAS is a distributed
algorithm with a probing based off-duty rule is given in [25]. Here, every sensor
broadcasts a probe PRB packet with a probing range . Any working node that
hears this probe packet responds. If a sensor receives at least one reply, it can
go to sleep. The range can be chosen based on several criteria. Note that this
algorithm does not preserve coverage over the original area. In [23] the authors
give a distributed and localized algorithm. Every sensor has an off-duty eligibility
rule. They give an algorithm for a node to compute its sponsored area. To prevent
the occurrence of blind-points by having two sensors switch off at the same time,
a random back off is used. They show improved performance over PEAS.

To our knowledge, [24] was the first work to consider the k-coverage problem.
[15] also addresses the k-coverage problem from the perspective of choosing enough
sensors to ensure coverage. Authors consider different deployments with sensors
given a probability of being active and obtain bounds for deployment. [27] solves
the problem of picking minimum size connected k-covers.

Now, we look at the two protocols that we compare our heuristics against. The
load balancing protocol (LBP) [4] is a simple 1-hop protocol which works by at-
tempting to balance the load between sensors. Sensors can be in one of three states
sense/on, sleep/off or vulnerable/undecided. Initially all sensors are vulnerable and
broadcast their battery levels along with information on which targets they cover.
Based on this, a sensor decides to switch to off state if its targets are covered by a
higher energy sensor in either on or vulnerable state. On the other hand, it remains
on if it is the sole sensor covering a target. This is an extension of the work in [3].
LBP is simplistic and attempts to share the load evenly between sensors instead
of balancing the energy for sensors covering a specific target.

The other protocol we consider is DEEPS [5]. The maximum duration that a
target can be covered is the sum of the batteries of all its nearby sensors that can
cover it and is known as the life of a target. The main intuition behind DEEPS is
to try to minimize the energy consumption rate around those targets with smaller
lives. A sensor thus has several targets with varying lives. A target is defined as
a sink if it is the shortest-life target for at least one sensor covering that target.
Otherwise, it is a hill. To guard against leaving a target uncovered during a shuffle,
each target is assigned an in-charge sensor. For each sink, its in-charge sensor is
the one with the largest battery for which this is the shortest-life target. For a hill
target, its in-charge is that neighboring sensor whose shortest-life target has the
longest life. An in-charge sensor does not switch off unless its targets are covered by
someone. Apart from this, the rules are identical as those in LBP protocol. DEEPS
relies on two-hop information to make these decisions.

In [18], we describe how [4] and [5] can be modeled using our target coverage
solution (Section 5.1).
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3. Our General Framework

Our framework applies to a class of graph and network problems wherein the locally
compatible solutions can be melded in a distributed fashion to yield a globally
feasible solution. For most sensor coverage problems, local covers when combined
together yield global covers, since if all local targets are covered, this implies that
globally, all targets are covered.

For such class of problems, even if it is intractable to find globally-optimal solu-
tions, it may be tractable to find locally-optimal solutions, since the problem size
is much smaller. For example, all possible covers of local targets of a sensor can
be efficiently found for bounded sensing range. These local solutions often are in-
terdependent, i.e., using one may impact a subsequent use of others. For example,
in sensor coverage problems, using one cover set may reduce the lifetime of those
covers which share sensors with the first. This is problematic if a series of solutions
are needed.

In this section we provide an overview of the principles of the generic framework.
The details as applied to the coverage problem are given in Section 4. Hence, in
the discussion that follows, we describe the four steps in the order in which they
are used.

(1) Applicability of the framework: The problem being solved must have
the property that compatible local solutions of neighbors when combined
give a globally feasible solution. Compatibility may be checked by commu-
nicating with the neighbors. For example, for the target coverage problem,
if for each sensor, all local targets have been covered, this implies that all
targets have been covered globally also. Hence, solving the problem locally
for every node gives a globally valid solution. This step also establishes
criteria for checking mutual compatibility of local solutions.

For an example of a problem that cannot be solved using this framework,
consider constructing a spanning tree. Here, the local solution would be
a spanning tree connecting a sensor to its neighborhood. However, these
local trees when combined, may have cycles and do not imply that a global
tree is formed. Of course, melding these subtree edges in a reduction-tree
fashion rejecting those edges which cause a cycle will yield a global
spanning tree [10]. However, that needs much more communication than
what can be efficiently done distributively. Hence this property of all local
solutions yield a globally feasible solution is imperative for our framework.

(2) Modeling the local solutions and their interdependencies: This
step starts with modeling the local solutions for the given problem. In
some cases it may possible to compute all solutions, whereas for others we
would need a representative sample to model the state space. For many
problems, these local solutions are not independent of each other. For
example, in the target coverage problem, for a given sensor, there can
be a number of different subsets of neighbors that cover the local targets
being considered. Since these sets are not disjoint, using one set drains
the lifetime of another set. To account for this, the framework envisions
a graph model to capture these dependencies among the local solutions.
Note the specifics of this graph would depend on the problem being
considered. We call this a Dependency Graph (See Section 4.2). This is a
key contribution of our framework. Instead of a simple greedy heuristic to
choose the best solution, we consider a solution with relation to its impact
on other possible solutions and use this as a criterion to assess a solutions
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quality.

Prioritize the local solutions: Each node needs to decide which of the
possible local solutions to use. Based on the dependency structure of these
local solutions and other problem specific metrics, a priority function can
be defined that measures the quality of a local solution. Including the
dependency information of the graph into this heuristic priority function
gives us a way to account for the problem structure.

Negotiate with neighbors for mutually satisfying solutions: This
step involves deciding the details of communication related logistics for
the 2-phase execution consisting of setup and negotiation phases. The
setup phase is usually a round of information exchange with 1-hop or
2-hop neighbors followed by construction of the local solutions and the
dependency graphs structure, and calculation of the priorities of the
local solutions. In the negotiation phase, a node communicates with its
neighbors and based on both its preference and those of its neighbors,
picks a solution to use. Again, the nature of this step would be problem
dependent and we explore this with respect to the target coverage problem
in the next section. Through its negotiation phase, a node attempts to
locally satisfy the twin goals of feasibility and local optimality. Also note
that the problem may require several rounds of negotiation to arrive at a
mutually acceptable solution. However, for effectiveness and scalability of
the resulting distributed algorithm, the number of communication rounds
with neighbors needs to be upper-bounded by a small constant.

An Example Mazimum Independent Sets: To illustrate the use of this frame-
work in a context outside that of the coverage problems for wireless sensor networks,
we consider the problem of finding a valid independent set of vertices for a graph
in a distributed manner. Given a graph G = (V, F), an independent set of vertices
V' is a subset V' C V such that no two vertices in V' have an edge e € E that
connects them. Let us now briefly develop the proposed framework for this prob-
lem and look at an example. We will go into much greater depth in developing the
framework for various coverage problems in the following section.

Figure 1. Example Graph for the Independent Set problem

1. Applicability: This problem of finding an independent set can be solved
within our framework since every node and its neighbors can decide their local
independent sets which collectively yields the global independent set. There will
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never be any two nodes x,y € V that will both decide to be in the independent
set if they have an edge (x,y) € F, since they know of the existence of this edge.

2. Modeling the local solutions and their interdependencies: For the indepen-
dent set problem, we define a local solution for a node to be given by a valid
local independent set of all nodes in its closed one hop neighbor set. Hence, a
node needs to construct all possible local independent sets to obtain all local
solutions possible. For example, consider the graph shown in Figure 1. For the
node B, the closed one hop neighbor set is given by {A,B,C,D}. All local
solutions for this set are given by {A4,C,D} and {B}. For the node B, these
two combinations are the only two possible local maximal independent sets.
By maximal we mean that adding another vertex to the set would destroy the
independence property. Similarly, for the node A, the set of local solutions is
given by {A} and {B} (i.e., either A or B can be in the independent set) and so on.

3. Prioritize the local solutions: The objective of the prioritization phase is to
have some criteria on the basis of which a node decides which local solution to use.
For the independent set problem, one possible way to prioritize the local solutions
may be given by ordering them in descending order of maximum cardinality.
Hence, for the node B, {A, C, D} would be the first choice local solution and {B}
would be the second. This is because the first would allow for a larger independent
set. If cardinalities are equal, we can break ties by node id’s.

4. Negotiate with neighbors for mutually satisfying solutions: A node must deter-
mine which of its solutions to use. Each solution is essentially a decision on which
nodes in the one hop neighbor set are a part of the independent set. Since such a
choice affects the solutions of other nodes in the neighborhood, a negotiation phase
is required. For example, in the Figure 1, if the nodes A, C, and D agree to the
first choice of node B then this automatically renders the choice of {A} invalid
from the local solutions of node A, thereby making { B} its local solution of choice.
The nodes selected in the independent set are colored gray in the figure.

Let us now briefly sketch the implementation details of these phases. Initially
every node broadcasts a message containing its id to discover who its neighbors
are. Upon receiving this information, each node can then independently compute all
local solutions and prioritize them. The negotiation phase would entail exchanging
a message with its neighbors that describes the independent set it prefers to use.
A neighbor can either accept or reject this proposed local partition. If a valid
independent set exists, it has to be in the set of all local solutions and hence
it will be satisfied. Else, none of the nodes will join the independent set. If the
neighbors accept a node’s choice, they have made a decision which now narrows
their own choices. For the example in Figure 1, when the node B has negotiated
its choice of {4, C, D} with its neighbors and they have accepted this, they join
the independent set. Node C can likewise negotiate with its neighbor F to select
one of E’s solutions in which E is not in the independent set. In case E has chose
itself in the independent set, C' can drop itself without impacting anyone else.

4. Developing the Framework for Coverage Problems

In this section we define the steps of our framework presented in Section 3 as
applied to different coverage problems. The specifics for each of the three coverage
problems - area, target and k-coverage are defined in the next section. We begin
with some definitions. Section 4.2 then lays out the framework. As opposed to
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the independent set example in the previous section, we will look at the coverage
problems in much greater detail in this section.

4.1 Definitions

e The Network Graph: A common representation of a sensor network is that of
using a graph to model the connectivity of the network. The network can be
represented using a graph G = (V, E) where, V' = {s1, s2,..., s, } is the set of
sensors and an edge e = (s;,s;) € E, if and only if sensor s; is in communication
range of sensor s;. In a network with fixed communication ranges for each node,
this model becomes a Unit Disk Graph.

e b(s): the battery available at sensor s.

o Cover Set C: In general, by a cover set we are referring to a minimal subset
of sensors that meets some coverage objective. The objective here depends on
the coverage problem being solved. We use the terms cover and cover set inter-
changeably.

o [t(C) = minsecb(s), the maximum lifetime of a cover C. The sensor s with
minimum battery is known as the bottleneck sensor of the cover C.

e Local Cover Set: For a given sensor s, there exists some local coverage objective.
For example in the target coverage problem, any sensor s has some local targets
(i.e., targets it can cover). We define the local cover set for a sensor s as a minimal
set of sensors in the neighborhood of s that cover all local targets. Alternatively,
all targets in the one-/two-hop neighborhood of s can be considered. See Section
5.1 for more details.

4.2 The Framework for Coverage Problems

4.2.1 Applicability of Framework

For coverage problems, if every sensor ensures that its local coverage objective
(local targets/area) is satisfied then this implies that the global coverage objective
has also been met. Also for the coverage problem, local solutions are always com-
patible with each other since a sensors local solution does not invalidate that of
another sensor’s solution.

4.2.2  Modeling the local solutions and their dependencies - The Lifetime
Dependency (LD) Graph

We approach this problem by focusing on the local neighborhood of a sensor.
Each sensor constructs all possible local covers that satisfy its local coverage ob-
jective. In the local 1-hop neighborhood, the number of local covers is usually small
(where a cover could be for area or targets, see Section 4.1). This allows individual
sensors to distributedly construct local minimal cover sets. A sensor can construct
its local covers by considering one-hop neighbors it can communicate to while try-
ing to meet its coverage objectives. For a better decision, it can also consider all
neighbors up to two hops and their targets at a slightly increased communication
cost.

When two cover sets have some sensors in common, they have some dependency
on each other because using one cover set drains the battery of the sensors it shares
with the other cover set. This is important because when we pick cover sets to use
in a schedule, we should take into account this influence that they have on future
cover sets in the schedule. To account for this we define the lifetime dependency
graph as follows.
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C1 C2

W(€) = minse cinc2b(s)

Figure 2. A Simple 2-node LD Graph

Every node in the LD graph represents a local cover and an edge between two
nodes implies that the two covers share some sensors in common. The weight of
an edge is given by the life of the weakest sensor in this set of common sensors
that the edge represents. Finally, we define the degree of a cover C' as the sum
of the weights of all edges incident to that node. More formally, the local lifetime
dependency graph can be defined as a weighted graph, G’ = (V’, E’) where, V' =
{C1,C,...,Cr} and each member C; € V' represents a local cover meeting the
local coverage objective, and an edge ¢’ = (C;,C;) € E', if and only if C; NC; # 0.
We also define weights on the nodes and the edges as follows:

o w(e'): Let ¢ = (C;,Cj), and I = C; N Cj. Then, w(e') = minger b(s).
o d(C)=2cicp and incident to ¢ W(€"), the weight or degree of a cover C.

The reasoning behind this definition of the edge weight comes from considering a
simple two node LD Graph (see Fig. 2) with two covers C; and C5 sharing an edge
e. The lifetime of the graph is given by,

L < min(lt(Cr) + 1t(Ca),w(e))

This indicates that for the two node graph, the lifetime is bounded by either the
sum of the individual lifetimes of the two covers C7 and Cs or by the lifetime of the
smallest common sensor in C; N Cy (given by w(e)). Note that if the two sets C;
and Cy were disjoint then the lifetime of the graph would have been I¢t(Cy) 4 1¢(C5).
The fact that they share some nodes in common implies that using one cover set
also reduces the lifetime of the sensor it has in common with the other cover set.
Hence, for the non-disjoint case, the bound on the graph could also be the smallest
common sensor between these covers.

Similarly, the reasoning behind the definition of the degree of a cover C' is that
by summing the weights of all the edges incident on the cover C, we are getting a
measure of the impact it would have on all other covers with which it shares an
edge.

4.2.8  Prioritize the local solutions

Initially, each sensor s communicates with its neighbors and exchanges informa-
tion on available battery b(s) and the region (area or targets) it can cover. We
will discuss the specific message exchanges in Section 5. Based on this informa-
tion, sensor s can compute all the local covers for its local objective. Each sensor
then constructs a local LD graph G’ = (V’, E’) for these covers, and calculates the
degree d(C') of each cover C' € V' in G'.

A priority function can be defined to prioritize the local covers. We base the
priority of cover C on its degree d(C) in the lifetime dependency (LD) graph. A
lower degree is better since this corresponds to a smaller impact on other covers. If
the degree is the same for two or more covers, ties are broken by using (i) the cover
with a longer lifetime, (ii) the cover with fewer sensors remaining to be turned on
(See the next step), (iii) the cover with the smaller sensor id.
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4.2.4 Negotiate solutions

The algorithm for a sensor to negotiate its solutions with that of its neighbors
operates in rounds. Each round consists of two phases. Phase 1 is the setup phase
as described above. In Phase 2, a sensor arrives at an on-off decision based on the
messages it receives. The operation in rounds is very similar to other distributed

s’-OFF (fors’ ¢ C),
s’-ON (for s’e C)

s’-ON received foralls’ € C,ands € C
Default if s € C and has the least id

Start
c ‘

Oou
Uy
o
55
L

pd
S0
Lo
(/)

NOTATION
C: Current Best
Cover
C’: Next Best Cover
s: Sensor
i) N H |
S . NL—}IQIIUUI

Figure 3. The state transitions to decide the On-Off Status [18]

After calculating the priority function, each sensor now has an ordering of its local
cover sets in terms of preference. The goal is to try and satisfy the highest priority
cover. However, a cover comprises of multiple sensors and if one of these switches
off, this cover cannot be satisfied. Hence, each sensor now uses the automaton in
Fig. 3 to decide whether it can switch off or if it needs to remain on.

The automaton starts with every sensor s in its highest priority cover C. The
sensor s keeps trying to satisfy this cover C' and eventually if the cover C' is satisfied,
then s switches on if s € C or, s switches off if s ¢ C. Note that a cover C is
considered satisfied if every sensor s € C' has switched on. If a cover C' cannot be
satisfied, then the sensor s transitions to its next best priority cover C’, C” and so
on, until a cover is satisfied.

The transitions of the automaton are outlined below.

e Continue with the best cover C': Sensor s continues with its current best cover
C if its neighbor s’ ¢ C goes off (since s’ does not affect C) or if neighbor s’ € C
becomes on (thus improving chances for C).

e To on/sense status: If all the neighboring sensors in cover C' except s become
on, and s € C, s switches itself on satisfying the cover C' for its neighborhood,
and sends its on-status to its neighbors.

o To off/sleep status: If all the neighboring sensors in cover C' become on thus
satisfying C, and s ¢ C, s switches itself off, and sends its off-status to its
neighbors.

e Transition to the next best cover C’: Sensor s transitions to the next best priority
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cover C', if (i) C' becomes infeasible because a neighboring sensor s’ € C has
turned off, or (ii) priority of C' is now lower because a sensor s’ ¢ C' has turned
on causing another cover C’, with same degree and lifetime as C, with fewer
sensors remaining to be turned on.

Note that the automata for negotiation is simple because for coverage problems,
we are not negotiating for mutual compatibility/feasibility. The only concern of
the negotiation phase here is that of local optimality.

5. Applying the Coverage Framework

In this section we employ our framework to show how it can be applied to the
Target, Area, and k-coverage problems.

5.1 Target Coverage

In the target coverage problem, we are given a set of targets T = {t1,t,....,tm}
that are scattered around a region R. These targets are considered to be stationary.
The objective of the problem is to monitor all targets in 1" while maximizing the
lifetime of the network. In addition to the previous definitions, we define:

o T'(s): The set of targets that sensor s can sense,

e N(s,k): The set of neighbors of sensor s at no more than k hops from s. This
set is closed i.e. it includes the sensor s.

e Local Cover Set: A local cover set for a sensor s is a minimal set of sensors
in N(s,1) that cover all targets in T'(s). For better performance, all targets in
T(s"),s" € N(s,1) orN(s,2) can be considered.

Using the framework defined in Section 4, the phases of the algorithm can be
specified as follows. Note that we consider a 1-hop neighbor set i.e. N(s,1). This
can easily be extended to more hops at a larger communication cost.

Compute, Weight and prioritize local solutions: Each sensor s communicates with
each of its neighbor s’ € N(s,1) exchanging locations, battery levels b(s) and b(s'),
and the targets covered T'(s) and T(s’). Then it finds all the local covers using
the sensors in N(s, 1) for the target set being considered. The latter can be solely
T(s) or could also include T'(s’) for all s € N (s, 1). It then constructs the local LD
graph G = (V, E) over those covers, and calculates the degree d(C) of each cover
C €V in the graph G.

Negotiate solutions: This round essentially remains the same with each sensor
using the automata of Fig. 3. Each cover set C' in the automata is a set of sensors
that can cover the target set being considered.

Correctness: In [18] we present a proof to show that the proposed heuristic is
correct, terminates and is deadlock free.

Message and Time Complexity: If the maximum degree A of the network graph
is assumed to be a constant, the message complexity is given by O(A) and can
also be considered to be constant. If 7 is the maximum number of targets in any
sensors neighborhood, it can be shown that the time complexity is given by O(AT).
Even though this is exponential, since 7 is usually small, the performance is not
affected. See [18] for more details.

Self-organization and self-repair: The algorithm is self-organizing since each sen-
sor s can run its own automaton independently to arrive at a decision to switch
on/off. By exchanging messages, the sensor does however take into account its
neighbors choices in making a decision. Also, because the distributed algorithm is
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organized in rounds, it is self-repairing. If a sensor fails, its neighbors can account
for that in the following round as they will not receive a ON message for that
sensor. This limits the loss of coverage to a maximum of one round.

5.2 Area Coverage

For the area coverage problem, we are given a region R and the goal is to have this
region completely covered at all times by active sensors.

In order to formulate the area coverage problem in our framework, consider any
individual sensor s. The area covered by this sensor can be represented as a disk
with the sensor at the center. The coverage objective of this sensor is to ensure that
the area within its coverage disk is completely covered at all times. Now, certain
parts of this disk are covered by different sensors in N(s,1). Hence, a cover set is
any minimal set of sensors in s’ € N (s, 1) that together cover this entire area.

Figure 4. Example for area coverage

An example is shown in Figure 4. For the sensor s, the following set covers are
possible for its area, {s}, {s1, s2, s3} and {s2, 3, s4}. In order to compute what part
of its area is covered by its neighbors, each sensor s exchanges its location and its
battery information with its neighbors in N(s,1). To determine what part of its
area is covered by its neighbors, we use the method described in [23] to determine
sponsored coverage. Once sponsoring information has been determined, a sensor
can compute all cover sets for its area. The weighting, prioritizing and negotiating
phases of the framework then follow as in the target coverage problem.

Alternatively, [21] defines a field as a set of points that are covered by the same
set of sensors. They then discretized the area into a grid. Once points have been
grouped into fields, all that is needed is to ensure that all fields are covered. Hence,
each field corresponds to a virtual target and the problem can effectively be reduced
to that of target coverage. We experiment with both the field based method and
the direct formulation described above in Section 6. A different approach is taken
in [3], where the authors use the idea of covering all the faces of a graph. This
avoids having to define the granularity of a grid.

5.3 k-Coverage

The k-Coverage problem can be defined for either target or area coverage. Here,
we discuss it in the context of target coverage. Let T' = {t1,t2,...,t,} be the set
of targets scattered around a region R. The goal is to ensure that for every ¢t € T
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at least k sensors cover ¢ at all times. Note that k& < §, where ¢ is the minimum
number of sensors covering any target ¢t € T. See [24] [15] [27] for more details.

The extension of our framework to the k-Coverage problem is straightforward.
All we need to do is to ensure that every local cover C constructed during the
initial setup phase is a k-Cover. To construct local covers that are k-covering, each
sensor picks k neighbors for every target in 7'(s). By imposing this restriction on
the local covers, we can ensure that globally, every target ¢ is k-Covered.

6. Simulation Results

In this section, we evaluate the performance of our coverage algorithms as compared
with LBP [4] and DEEPS [5]. The simulations were programmed using C*. A
static network of sensors is used. For the target coverage problem, the targets are
considered to be static also. For the area coverage problem, we use both our direct
formulation and the concept of fields (Section 5.2) to transform the area coverage
problem into the target coverage problem. Then the same algorithms are applied
with these virtual targets. The k-coverage problem is also simulated with respect
to target coverage. However, since LBP and DEEPS are not extended to solve this
problem, we cannot compare our results to theirs for k-coverage.

We consider sensors scattered randomly in a 100m x 100m area. It is also assumed
that the communication range of each sensor is twice the sensing range. We consider
two different energy models. In the linear model, the energy required to sense a
target at a distance d is proportional to d. In the non-linear model, the energy
needed to sense the same target is a function of dP, where p varies typically from
2 — 6. For our experiments, we fix the value of d to 2 (quadratic model).
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Figure 5. Lifetime with 25 Targets, Linear Energy Model

In order to compute all local covers, each sensor maintains a list of all local
targets and the neighbors that cover them. This is stored in a matrix where the rows
represent neighbor sensors in N (s, 1) and the columns targets in 7'(s). This matrix
is bounded since, by considering only one or two hop neighbors, we have restricted
its size. Iterating over the different row combinations that cover all columns of this
matrix gives us all possible covers. Since the number of local targets is limited, the
number of columns of this matrix are also limited.

For the target coverage problem, we consider 25 and 50 targets, randomly de-
ployed in the area. This is the same as considered in [4] and [5]. We vary the
number of sensors in steps of 20. The results for 25 targets using a linear energy
model are shown in Fig. 5. We also consider a 2-hop version of our heuristic. Here,
the set of neighbors is defined as N(s,2). Also, for each sensor the target set T'(s),
is defined as all the targets of its one-hop neighbors and itself. As we can see from
the results in Fig. 5, our 1-hop heuristic is on an average about 10% better than
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LBP and almost similar to the 2-hop DEEPS in performance. If we compare the
2-hop version of our heuristic against DEEPS, it is superior. The same experiments
are also carried out using the quadratic energy model. A snapshot of the results
are shown in Fig. 6. Here, we consider a network with 60 sensors and compare
the performance of both the energy models. We also consider the linear case with
50 targets. As can be seen from these results, the relative trends are similar to
Fig. 5 with the basic 1-hop heuristic outperforming LBP and being very similar to
DEEPS in performance.

30
25
o 20 - gLBP
£ S DEEPS
5 15
£ # 1-Hop
10
m 2-Hop
5 -
0 I ENAIL k%
25 Targets, 50Targets, 25 Targets,
Linear Linear Quadratic

Figure 6. Lifetime with 60 sensors, energy model and number of targets varying

For the area coverage problem, once again sensors are scattered randomly in a
100m x 100m area. However, now the objective is to continuously monitor the area.
We apply the same decomposition of a given graph into fields for the field based
formulation. A virtual target corresponding to each field is considered. By covering
each of these virtual targets, we ensure that all the fields and hence, the whole area
is covered. We also use a direct formulation as explained in Section 5.2. The results
are shown in Figure 7. Once again, a similar trend to the target coverage problem
is observed with the 1-hop version outperforming LBP and being very similar to
DEEPS. The field based decomposition yields slightly better results because of the
loss in sponsored area calculation of the direct method as explained in [23].
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Figure 7. Area coverage with Number of Sensors varying, Linear Energy Model

Finally, we implemented the k-coverage for k = 2, i.e., the two covered case
where every target is covered by at least two sensors. Since both LBP and DEEPS
have not be extended to the k-coverage problem, we are unable to compare our
performance relative to them. Instead, we compared the lifetime for the 2-covered
case with the 1-covered case for our basic 1-hop algorithm. Using a network with
25 targets, we vary the number of sensors. The energy model we consider is linear.
The results are summarized in Table 3. On an average we see a reduction of lifetime
of 35-40% for the 2-covered case as compared to the 1-covered case.
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Table 3. Lifetime of a 2-covered vs. 1-covered
network with 25 targets

No. of Sensors | 1-covered | 2-covered
40 13.8 8.7
60 22.4 14.1
80 33.4 19.8
100 37.2 23.2
120 45.6 27.1

7. Conclusion

In this paper, we present a general algorithmic framework for solving certain graph
and network problems. The framework applies to graph and network optimization
problems that exhibit the property of local compatible solutions yielding globally
feasible solutions when combined. We utilize the framework to develop heuris-
tics for solving the different coverage problems for sensor networks. Experimental
evaluation of these heuristics shows performance gains when compared to existing
approaches in [4, 5].

A highlight of our framework is in defining a Dependency Graph to capture
the interactions between local solutions. This enables us to not only model these
interactions but also factor them into the process of heuristically picking better
solutions. While previous algorithms are based on greedily picking solutions, our
heuristics can use this graph to gain an insight into the problem structure. This
is combined with a negotiating phase, where each node communicates with its
neighbors to ensure compatibility of their mutual solutions and to determine which
solution to use.

Overall, our framework presents a new way of looking at these problems. An
initial version has been presented here and several variations of the Dependency
Graph and the weight functions are currently being explored. We also illustrated
how the framework can be applied to the maximum independent set problem.
Other problems that seem good candidates include vertex cover, maximum triangle
packing, and maximum channel assignment in cellular networks.
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