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Abstract

The rational expectations hypothesis (REH) has long served as a foundation in
macroeconomic laws of motion. However, the assumptions of REH are likely too

powerful to be representative of economic actors. This research evaluates adaptive
learning, a developing alternative to rational expectations, using a multi-agent

macroeconomic prediction “game.” Data was gathered from a group of students, each
predicting the outcome of a single economy over time. Each agent was asked to

forecast output (GDP) and inflation in each period based on historic levels of output,
inflation, and interest rates. These data were then analyzed under various theoretical

models of adaptive learning for mathematical fit.
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1 Introduction

Economics has long recognized and attempted to quantify the phenomena of forward

thought. Known as “expectations” in literature, has become an essential component of

macroeconomic laws of motion, the dynamic mathematical systems by which macroe-

conomies are modeled. Researchers recognize that awareness of the future impacts how

individuals make economic decisions, but have yet to determine a way to accurately

portray these decisions in models. Historically, several methods have been used to

approximate expectations’ impact on the macroeconomy. Originally, näıve expecta-

tions were used as a simple stand-in for awareness of expectations, and the Rational

Expectation Hypothesis was later developed to capture more nuanced subjects. The

history and descriptions of both of these methods will be presented, as well a brief

introduction to adaptive learning, the expectation formation method at the center of

this paper. Additionally, this introduction will discuss how central banks may attempt

to improve knowledge within a learning model through central bank communication.

“Näıve” expectations were the original representation of an agents consideration of

future economic conditions. It can be described as follows:

xe(t+1) = xt

where xt is economic output in the tth time period. The superscripted term, xe(t+1)

represents the expected value of growth in the following time period. While this as-

sumption captures an awareness of the future, it is too weak to accurately model the

complexity of human inductive reasoning, as economic agents are able to recognize

that tomorrow’s growth may bring different outcomes than did today’s. Then, follow-

ing the work of Muth (1961) and Lucas (1967), the Rational Expectations Hypothesis

(REH), became the standard for modeling macroeconomic expectations, and has re-

mained the driving representation in macroeconomic research and modeling to date.
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In a deterministic model, REH can be simply stated:

xe(t+1) + g(t+1) = x(t+1)

Powerful and mathematically elegant, REH led to significant developments in eco-

nomic theory and understanding. Under this framework, a “rational” agent has perfect

understanding of the underlying laws of motion of an economic system, allowing each

agent to have a near complete view of the systems evolution. Only random economic

shocks, represented by g above, are outside of the pool of knowledge available to a ra-

tional agent. Random shocks are events outside of market interaction which can have

an impact on growth or inflation, such as fluctuations in oil prices or natural disasters.

However, REH is built on several assumptions, some of which are too strong to be

accurate to reality. Chief among these is the assumption that rational agents have

knowledge of all exogenous variables present in the economy’s laws of motion, values

which scientists and industry professional must research thoroughly to even hypothe-

size. Furthermore, REH assumes that all agents are likeminded in their analysis of the

macroeconomy and make identical forecasts of the future.

More recently, researchers have been pursuing a new method of expectation rep-

resentation, known as adaptive learning, or simply “learning.” Under this set of as-

sumptions, an economic agent is believed to gain knowledge of the laws of motion over

time, becoming more able to accurately forecast as they gather more experience. No

singular means of representing learning has been developed, and so learning theorists

have worked through experimentation to find models and trends that match how hu-

man subjects predict, perform, and adjust in economic simulation . This paper follows

the work of other researchers who have created simulations of pricing models, but in-

stead applies these simulation theories and methods to a macroeconomic framework. It

builds on the Honors research of Mr. Atticus Graven ’14, but delves into more realistic

economic representation by gathering data from a multiple-agent economy, rather than
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many single-agent systems.

This paper seeks to explore various possible models of adaptive learning. By gath-

ering data using a forecasting ”game” in a simulated economy, the paper establishes a

set of data to capture how subjects use their knowledge of prior outcomes to predict

economic changes. Once this data set is collected, seven theoretical models of learning

are tested against it to find patterns of fit and relative strength. While much discus-

sion of various rules exists in the literature, relatively little directly tests experimental

data against instictive learning processes. In not setting or prepping subjects in how

directly to think about problems, the research allows for testing a sample of individuals

to see if any single theoretical model proves most effective in representing expectations.

Through the course of the experiment, there is a degree of inconsistency among the

data, but some definitive trends appear in how the subjects may form expectations as

a group.

This paper will first present relevant literature to adaptive learning. Next, it will

discuss and explain the laws of motion used in the generation of the simulated economy,

as well as provided an explanation of the experimental design. Afterwords will follow

an explanation of the theoretical learning rules being tested against the experiental

data, and the statistical outcomes of those rule tests. A discussion of the results and

their implications will follow, with suggestions of improvements for future experiments

with regards to consistency in the data set.

2 Literature Review

There has been a growing consensus among economists that REH contains assump-

tions that are too powerful to accurately represent society, as actual economic agents

cannot maintain the level of information necessary to form perfectly rational predic-

tions. The complexity of this problem is addressed in Arthur (1992), who suggests the

problems reach a level of complexity after which computational and deductive solu-
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tions are impossible to find. Arthur argues that these questions beyond the “Problem

Complexity Boundary” must therefore be solve inductively, drawing on prior knowl-

edge and applying it to a current issue. This form of problem solving has been used

mathematically for many years, and can be represented formulaically. Arthur further

suggests that this form of reasoning could be tested and specified using experimental

methods, which have since been employed in forecasting research.

Forecasting models in expectation formation follow a significant form throughout

research. They are generally set up as a forecasting “game,” in which subjects are

given some set of information about the economic system. Based on the provided

information, each subject is asked to forecast the value of some endogenous variable in

the next time period. These forecasted values are then used to generate an “expectation

value,” which is input into a system of equations to calculate the actualized values of

the variable given the input expectations. Subjects are presented with the new period’s

data, and are asked to forecast again with the new information. This process continues

for a given number of periods, and often subjects are compensated based on their

prediction accuracy.

Many examinations of expectation formation have developed through asset pricing

systems, wherein subjects attempt to predict the value of some tradable good. Marimon

and Sunder (1993) created a test environment in which subjects spent some periods

engaged in trading goods, and other times outside the transactions focused on price

prediction. Again, prices were shown to deviate from rational equilibrium, with more

consistent with adaptive learning as a behavioral basis. Hommes, Sonnemans, Tuinstra

and van de Velden (2005) took a more classic example of such a model, using subjects

with information of dividend values and interest rates to predict the value of a good

against several pre-programmed, “fundamentalist” traders which always predicted a

rational price. This test found that, in general, simple adaptive learning rules were

more effective than the REH in determining price levels of the asset. This paper,

while it targets similar goals of analyzing expectation formation, approaches the issue
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through a macroeconomic framework. This is done to eliminate the aspects of dividend

payments and other extraneous factors, and instead focus on the expectation values

assumed in the Dynamic Schocastic Equilibrium (DSGE) models which have become

a central instrument of macroeconomic theory. Many of these models assume REH

subjects as a foundational aspect of their equilibria (Woodford 2003), but the validity

of such restricting ideas fails to support recent empirical evidence. By tackling these

models directly, this paper hopes to find some evidence to match macroeconomic theory

with more recent empirical findings.

The macroeconomic forecasting model this paper uses is based in part on the work

of Graven (2014), but varies from his work and other literature most notably in the

difference in size of experimental economies. Graven (2014) relied on single-subject

economy data, allowing each participant total control of the expectation terms of their

system. While beneficial for his focus on parameter estimation within the system, this

paper hopes to generate data more accurate to an existing economy, and thus ran tests

in a multi-subject system. Furthermore, the test groups of the experiments presented

here (numbering thirteen subjects and nine, respectively) are larger groups than both

Hommes et al. (2005), which used forecast groups of six, and Marimon and Sunder

(1993), with four forecasters. By enlarging the number of participants, the relevant

weight of each expectation on the economy was lessoned, allowing for a more realistic

model.
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3 Experimental Design and Model

3.1 NK Model and Parameters

In order to test the various possible adaptive learning models, a forecasting ”game” was

developed. This ”game” simulated an economy using a New-Kenysian (NK) system

of equations to represent the economic laws of motion. Full details of the particu-

lar model and foundations can be found in Woodford (2003). The monetary policy

rule was used for capturing expectations previously in Assenza, Heemeijer, Hommes

and Massaro (2013). This Dynamic Schocastic Equilibrium (DSGE) Model is built

on micro-foundations of representative agents which are fully utility-maximizing and

firm-maximizing representative firms, and was previously used in Graven (2014). The

model’s laws of motion can be displayed as follows:

xt = xet+1 − φ(it − πe
t+1) + gt

πt = βπe
t+1 + λxt + ut

it = π̄ + θπ(πt − π̄) + εt

where gt, ut, εt are autocorrelated error terms of the form:

gt = δgt−1 + g̃t

ut = µut−1 + ũt

and g̃t and ũt are stochastic error terms of mean 0 and standard deviation of 0.2.

These laws of motion are used to systematically replicate the standard business

cycle. They are based around three endogenous variables: xt, πt, and it.

• xt is the output gap. This is the standardized measure between the actual

Gross Domestic Product (GDP, or ”output”) and its calculated natural value.
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The natural value is generated assuming total employment and full production

in a given year. A positive value indicates that the economy has generated more

output than the natural value, while a negative value indicates worse than natural

productivity. The equation above states that the output gap in period t is based

on expectations of the output gap in period t + 1, the expected inflation rate,

and the interest rate. Expectations of both the output gap and the interest

rate are positively correlated with actual output. The interest rate is negatively

correlated.

• πt is the inflation rate, which measures the percentage change in price levels

across the economy. Each period’s inflation is based on inflation expectations and

the period’s output gap. There is a positive relationship between the expectations

of both output and inflation expectations with the actual inflation rate.

• it is the interest rate, which measures the cost of borrowing money. It is

influenced by a central bank, such as the United States’ Federal Reserve through

the use of the federal funds rate.

In each of these instances, the related random shocks can either positively or negatively

impact the variables. This model assumes a two-period information lag in expectation

formation. That is, subjects form expectations for period t + 1 based on information

from period t− 1.

The model also includes the following parameters:

• φ: The inter-temporal elasticity of substitution. This is a representation of how

spending changes based on the expected interest rate. A higher φ indicates

that subjects are more sensitive to rising prices. For the purpose of this model,

φ = 6.369.

• β: The global discount factor. The value is always between 0 and 1, and in this

case the value was set as β = 0.99.
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• θπ is the interest’s rates responsiveness to inflation. In this instance θπ = 1

• λ is the slope of the Phillips curve, which indicates the relationship between

inflation and the unemployment rate. It is used here to represent the impact

that increases in productivity through employment impact the inflation rate.

This paper assumes λ = 0.3

3.2 Experimental Design

Two separate iterations of the experiment were run, one with 13 subjects and another

with 9. In both instances, the subjects logged into a web browser as unique users on

their college-issued laptops. Experimenters discussed the goals of the experiment, the

normal bounds of the output gap and inflation rate, and were informed of the compen-

sation process. It was particularly noted that compensation would vary depending on

accuracy of responses, and that there would be a random selection between inflation

and output error for each user to ensure they were incentivised to accurately forecast

both variables. The autocorrelated shocks were randomly generated in MATLAB 2012;

subjects were not informed of the degree of the shocks. Each was presented with an

initial actual output gap and inflation value. From these values and based on ele-

mentary information on the relative influences of output and inflation on one another,

each subject was asked to forecast the next period’s output and inflation values. The

subjects were not provided any view or progress of the interest rate, though they were

informed that interest rates were involved in the calculation of the model. The values

of the subjects were then averaged into a single expected inflation and expected output

gap value. This is one of the primary differences between this experiment and Graven

(2014). The use of aggregated values to create an economic system allows for a more

representative economy than a single-subject system. The average value was used as

the expectation terms in the model, and from these values actual output and inflation

were calculated by the program. These values were then added to a graphic and chart,
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and were in turn used to calculate the follow period’s actual values. You can see an ex-

ample frame from the program showing information in Figure 1. This iterative process

continued for 45 periods in Experiment 1, and 60 periods in Experiment 2.

Figure 1: Sample game screen. Reproduced from Graven (2014).

4 Results

4.1 Description of Learning Rules

There are several potential learning models that have been explored in prior research.

The descriptions set down in Table 1 are a selection of potential rules, adapted from

Pfajfar and Zakelji (2013). Output and Inflation equations are formatted identically,
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with all occurences of x replaced with π and vice versa. The only exception to this

rule is (6) and (7), for which the independent variables stay matched to the title of the

equation. Each model is a distinct pattern of learning expression, and exist theoretically

as follows:

• The autoregressive process (1) is one of the simplest hypotheses of adaptive learn-

ing, which suggests that expectations of future periods are based on the expecta-

tions of prior periods. This is an AR-1 model, meaning that only the most recent

period of expectations are used in the generating of the equation.

• The sticky information method (2) assumes that otherwise rational-acting agents

retain some knowledge of their previous expectation formations. This information

is a convex combination of prior expectations and the REH, with λ1 representing

the weight given to the prior period’s rational solution, and 1− λ1 providing the

weight of the prior expectations.

• The ”true” adaptive learning model of this set, (3) assumes a constant gain rate

of learning, represented by γ. This variable demonstrates the degree to which

the subject uses the variance of her last expectation from the actual value to

inform her expectation formation. Additionally, this rule suppresses a constant

value, suggesting that all of the weight of the decision falls within the weight of

the prior actual and expected values.

• A standard trend extrapolation model such as (4) suggests that subjects assume

that the endogenous variable follows a continuing pattern, which she attempts to

infer from the previous two periods of actual data.

• Equations (5), (6), and (7) exist as a series of models that allow for a com-

parative analysis. (5) is designed as a model to capture the use of all available

lagged exogenous variables in decision making. (6) and (7) provide an alternative

benchmark in which only output or inflation is considered.
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Learning Rule Model

(1): Autoregressive Process (π) πet+1 = β0 + β1π
e
t|t−1

(1): Autoregressive Process (Output) xet+1 = β0 + β1x
e
t|t−1

(2): Sticky Information (π) πet+1 = λ1β0 + λ1β1xt−1 + β2πt−1 + (1 − λ1)π
e
t|t−1

(2): Sticky Information (Output) xet+1 = λ1β0 + λ1β1πt−1 + β2xt−1 + (1 − λ1)x
e
t|t−1

(3): Adaptive CG Learning (π) πet+1 = πet−1|t−2 + γ(πt−1 − πet−1|t−2)

(3): Adaptive CG Learning (Output) xet+1 = xet−1|t−2 + γ(xt−1 − xet−1|t−2)

(4): Trend Extrapolation (π) πet+1 = β0 + πt−1 + β1(πt−1 − πt−2)

(4): Trend Extrapolation (Output) xet+1 = β0 + xt−1 + β1(xt−1 − xt−2)

(5): General Model (π) πet+1 = β0 + β1πt−1 + β2xt−1
(5): General Model (Output) xet+1 = β0 + β1xt−1 + β2πt−1
(6): Lagged Output (π) πet+1 = β0 + β1xt−1
(6): Lagged Output (Output) xet+1 = β0 + β1xt−1
(7): Lagged Inflation (π) πet+1 = β0 + β1πt−1
(7): Lagged Inflation (Output) xet+1 = β0 + β1πt−1

Table 1: Potential learning rules, specified for inflation

Two of the models presented here deviate from those presented in Pfajfar and Zakelji

(2013). (2) has been adapted to include knowledge of the lagged inflation term. A

simple learning rule was judged to be too similar to (1) for the sake of this experiment,

so a rational representation other than the MSV was generated to provide additional

insight. In (5), the interest rate value was removed from the general model, since

unlike in Pfaifar’s experiment, subjects of this experiment were not exposed to the

interest rate, and thus not able to factor its value into their decision-making. Each of

these models provides a potential explanation for how subjects may form expectations.

In addition, by comparing the relative strength of models to one another, potential

trends or theoretical tests can be checked to form a fuller idea of how historic data is

processed.

4.2 Statistical Analysis

The set of models discussed in the previous section were all analyzed using MLE regres-

sion analysis. Relative effectiveness of each model was evaluated through calculation

of AIC terms for each model, with the lowest AIC value representing the most effec-
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tive fit to the data. In order to compare models, the first three user input periods

were dropped from every model to compensate the additional lagged terms used in (3)

and (4). Summarized information is contained in Table 2 for inflation and Table 3 for

output. Tables for each regression can be found in Appendix 2.

In evaluation of the various models, it is clear that several outcomes do not reflect

the theoretical framework in which the regression analyses were created. In (3A) an

impossible gain parameter is observed, as γ is larger than 1. As a gain parameter is

designed to reflect the weight an agent gives to their previous estimation error, it is

expected that this value should appear as an percentage term. While the model passes

the linear restriction existing to ensure that the coefficient values sum to 1, a negative

coefficient falls outside the reasonable values of the theoretical design. In (4) a similar

issue is observed with the generation of the coefficients. In order for the regression

analysis to accurately represent the theory of a constant gain learning model, the

coefficients of the first and second lagged terms should be expected to have coefficents

of 1 + β1 and −β1, respectively. This linear restriction held for neither inflation nor

output in either test group. Both of these models, therefore, are not found to be

accurate representations of how expectations are formed among these groups. The most

clearly representative model of this set, (2), also displays some degree of inconsistency

within the testing. It held the best AIC numbers in three of the four test sets, and was

the second most accurate model in the remaining value. However, the inflation test

of experiment 1 contains an insignificant expectations term, which would suggest that

rational expectations were more consistent with the regression, which doesn’t match

the results of the other tests in general, and not (2) in particular.

Other models followed theoretical understanding to a degree sufficient for further

analysis. (1) suggested a positive relationship between lagged expectations and current

expectations in each test, which refutes the suggestion of (2A)’s inflation result that

rational expectations were insignificant. However, in general the autoregressive model

was consistently one of the least effective models, suggesting that subjects were aware
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Exp. 1/Rule (1) (2) (3) (4) (5) (6) (7)
Theory χ χ χ χ
AIC 2115.164 2022.674 2025.866 2023.558 2020.78 2133.389 2022.827
AIC Order F B E D A G C

Exp. 2/Rule (1) (2) (3) (4) (5) (6) (7)
Theory χ χ χ χ
AIC 902.2884 670.6455 809.126 809.9863 824.325 1520.314 823.2568
AIC Order F A B C E G D
Note: A χ indicates that the analysis is comparable to current economic theory, and is thus
usable. The AIC Order provides clarification on the relative accuracy of the model, with A
being the most accurate and G being the least.

Table 2: Inflation test summary across both experiments

Exp. 1/Rule (1) (2) (3) (4) (5) (6) (7)
Theory χ χ χ χ χ
AIC 3525.75 3097.738 3142.431 3143.534 3140.239 3143.206 4260.126
AIC Order F A C D B E G

Exp. 2/Rule (1) (2) (3) (4) (5) (6) (7)
Theory χ χ χ χ χ
AIC 3531.238 3130.557 3152.654 3142.858 3141.394 3148.032 4055.597
AIC Order F A E C B D G
Note: A χ indicates that the analysis is comparable to current economic theory, and is thus
usable. The AIC Order provides clarification on the relative accuracy of the model, with A
being the most accurate and G being the least.

Table 3: Output test summary across both experiments
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of more than their former expectations when creating their forecasts.

Besides (2A) Inflation, (2) was consistently the most effective learning rule. Building

on the information suggested from (1) and compared to the relative success in relation

to (5), the data presented seems to indicate that there subjects used both expectations

and lagged endogenous variables in their decision making, and thus used all information

available to them in forecasting process. By the sticky information model we can also

observed the suggested weight between prior expectations and previous actualized data.

Model (2B) of inflation suggests that nearly half of the weight of the decision was based

on prior expectations, but the lack of consistency with (2A) calls into question the

overall validity of that observation. However, both output analyses suggested a greater

weighting towards prior actualized values, with λ = 0.7 and λ = 0.85, respectively,

where λ is the weighted average of these values. It is also interesting to note that

both output tables suggest a negative correlation between prior inflation and expected

output, which connects with the theoretical understanding of the Phillips Curve.

In our final tests we observe more specific relationships between the actualized terms

of the model. It is clear from AIC values that the general model is one of the best

rules empirically for every model except (5B) Inflation. It is worth noting that of these

four analyses, (5B) Inflation was also the only test in which both output and inflation

were not significant, with lagged output values not being an indicator of the expected

inflation changes. On another note, the coefficients of the regressions respond to the

presence of fuller information in the way macroeconomic theory suggests they should.

In the case of (2A) inflation, the value of the prior inflation coefficient is greater in (5)

than in (7), suggesting that subjects place greater value on the prior inflation value

when they are synthesizing information to make predictions, rather than relying on a

more näıve approach. Furthermore, in both of (5)’s output analyses, prior output is

seen to have lower values when considered with prior inflation, as compared to being

observed alone as in (6). This supports the assumption that subjects understand the

contemporaneous relationship between higher inflation and lower output, and carry
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that expectation through their forecasts.

4.3 Discussion

While the data presents several insights into the potential learning rules of the subjects,

there is a fair degree of inconsistency within the analyses. While the most effective

models (2) and (5) tend to follow observable trends, each possesses a test which does

not follow economic theory. Furthermore, these anomalies do not occur in the same

experiment groups, which decreases the likelihood that the differences are due to an ex-

perimental anomaly. There are several factors which may have led to these inconsistent

data. The constraints of the program limited the number of subjects of the experiment;

larger data sets than those presented here were attempted, but ended prematurely due

to user errors which led to server failures for the game. A larger sample size may

have provided more defined separations between closely linked rules, as well as greater

clarity to what occur in the inconsistent analyses. Model design may also have led to

unususal outcomes. While not of direct impact to this analysis, unusual spikes in both

output and inflation occured during the testing period, which may have limited the

ability of the subjects to settle fully into a consistent, natural pattern of expectation

formation. It is possible that these spikes were a result of the overweighting of shocks

within the model, but further analysis of the laws of motion needs to be explored to

ensure the stability of the DSGE setting under these conditions.

Furthermore, it is possible that there is not a single learning rule that all subjects

follow. Differences in learning methods have some historic support in research, and

would support a claim that learning follows is ingrained more as a desire that an

iterative process. Heterogeneous decision-making on the subject level could lead to in-

consistencies in aggregation. The idea of heterogeneous learning is discussed in Pfajfar

and Zakelji (2013) and Hommes et al. (2005), and would be more effectively tested in

a single-agent economy, or on a subject basis. Further iterations of this study could

explore this subject further, but such an analysis falls outside the bounds of this paper.
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5 Conclusion

This experiment was generated with the goal of examining potential learning models

in an experimental setting to test their practical validity. While several trends ap-

peared within the design, a definitive representation of expectation formation remains

enigmatic. Evidence suggests that subjects favor actualized values over their prior ex-

pectations, and some analyses suggest that subjects are considering the relationship

between endogenous variables, while others are not. The tests pressent evidence that

the subjects of these test leaned towards a trend extrapolation rule, but the model

presented in this paper is insufficient to represent their method.
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6 Appendix 1: Compensation Schedule

This compensation method adapted from Hommes, Sonnemans, Tuinstra and van de
Velden (2005) and Graven (2014)

Each subject received $5 for participating in the program, and were told that, on
average, each subject could expect to receive $15 based on their performance. It was
also made clear that the compensation would be based on the error of one of their two
forecasted values, selected at random. This design was to incentivise the subjects to
attempt to accurately predict both variables to the best of their ability in each period.
The formula is point-based, with each subject receiving a number of points each period
based on the squared error of their expectation from the actual value of the period.
Previous work suggests that inflation rates are easier to predict than output(see Graven
(2014)), so an exchange rate was established to create a $15 average return independent
of which endogenous variable is selected. The exchange rates for inflation and output,
respectively, are:

ρπ = 4, 900 points / dollar

ρx = 600 points / dollar

Using this point system, earnings were calculated based on a maximization equation.
Let vi be the the output gap x or the inflation rate π for subject i. Then, vit is that
variable in period t, and ve is the ith subject’s prediction for that variable in period t.

eit = max(2000 − 2000

0.156
[(v − veit)]

2, 0)

Then, eit is the point earnings in period t of subject i. The total earnings of i can be
written:

ΣT
t=0(eit)

ρi

Where T is the total number of periods, and ρi is the variable’s rate of exchange. In
the case of this experiment, T = 45 for Experiment 1, and T = 60 for Experiment 2.
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7 Appendix 2: Regression Models

Experiment 1 — Inflation Learning Rule (1) — Experiment 2

Experiment 1 — Inflation Learning Rule (2) — Experiment 2
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Experiment 1 — Inflation Learning Rule (3) — Experiment 2

Experiment 1 — Inflation Learning Rule (4) — Experiment 2
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Experiment 1 — Inflation Learning Rule (5) — Experiment 2

Experiment 1 — Inflation Learning Rule (6) — Experiment 2
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Experiment 1 — Inflation Learning Rule (7) — Experiment 2

Experiment 1 — Output Learning Rule (1) — Experiment 2
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Experiment 1 — Output Learning Rule (2) — Experiment 2

Experiment 1 — Output Learning Rule (3) — Experiment 2
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Experiment 1 — Output Learning Rule (4) — Experiment 2

Experiment 1 — Output Learning Rule (5) — Experiment 2
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Experiment 1 — Output Learning Rule (6) — Experiment 2

Experiment 1 — Output Learning Rule (7) — Experiment 2
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