
Ursinus College
Digital Commons @ Ursinus College

Physics and Astronomy Honors Papers Student Research

4-25-2016

Quantum Mechanical Interference in the Field
Ionization of Rydberg Atoms
Jacob A. Hollingsworth
Ursinus College, jahollingsworth@ursinus.edu

Adviser: Thomas Carroll

Follow this and additional works at: https://digitalcommons.ursinus.edu/physics_astro_hon

Part of the Atomic, Molecular and Optical Physics Commons
Click here to let us know how access to this document benefits you.

This Paper is brought to you for free and open access by the Student Research at Digital Commons @ Ursinus College. It has been accepted for
inclusion in Physics and Astronomy Honors Papers by an authorized administrator of Digital Commons @ Ursinus College. For more information,
please contact aprock@ursinus.edu.

Recommended Citation
Hollingsworth, Jacob A., "Quantum Mechanical Interference in the Field Ionization of Rydberg Atoms" (2016). Physics and Astronomy
Honors Papers. 1.
https://digitalcommons.ursinus.edu/physics_astro_hon/1

http://ursinus.edu?utm_source=digitalcommons.ursinus.edu%2Fphysics_astro_hon%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ursinus.edu?utm_source=digitalcommons.ursinus.edu%2Fphysics_astro_hon%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.ursinus.edu?utm_source=digitalcommons.ursinus.edu%2Fphysics_astro_hon%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.ursinus.edu/physics_astro_hon?utm_source=digitalcommons.ursinus.edu%2Fphysics_astro_hon%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.ursinus.edu/physics_astro_stu?utm_source=digitalcommons.ursinus.edu%2Fphysics_astro_hon%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.ursinus.edu/physics_astro_hon?utm_source=digitalcommons.ursinus.edu%2Fphysics_astro_hon%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/195?utm_source=digitalcommons.ursinus.edu%2Fphysics_astro_hon%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ursinus.co1.qualtrics.com/jfe/form/SV_1RIyfqzdxsWfMQ5
https://digitalcommons.ursinus.edu/physics_astro_hon/1?utm_source=digitalcommons.ursinus.edu%2Fphysics_astro_hon%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:aprock@ursinus.edu


Quantum Mechanical Interference in the

Field Ionization of Rydberg Atoms

by

Jacob A. Hollingsworth

Department of Physics
Ursinus College

April 27, 2015

Submitted to the Faculty of Ursinus College in fulfillment of
the requirements for Honors in the Department of Physics.





Copyright c© April 27, 2015 by Jacob A. Hollingsworth
All rights reserved





Abstract

Rydberg atoms are traditionally alkali metal atoms with their valence electron

excited to a state of very large principle quantum number. They possess exaggerated

properties, and are consequently an attractive area of study for physicists. An

example of their exaggerated properties is seen in their response to the presence of

an applied electric field. In this work, we study the energy distribution of Rydberg

atoms when subjected to a dynamic electric field intended to ionize them.

We excite 85Rb atoms to a superposition of the 46D5/2 |mj| = 1
2

and |mj| = 3
2

states in the presence of a small initial electric field. After a delay time, the electric

field is pulsed in order to ionize the atoms. The current produced by the ejected

electrons is measured. Calculations and experimental data are presented which

display interference effects between the amplitude from the components of the initial

superposition.
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Chapter 1

Introduction

1.1 Introduction

A Rydberg atom is an atom occupying an energy state of large principal quantum

number n, also know as a Rydberg state. Rydberg atoms, which are traditionally

alkali metals, possess valence electrons with a probability amplitude that primar-

ily lies very far away from the nucleus of the atom. The remaining inner shell

of electrons screen the charge of the nucleus, creating a positively charged ionic

core. Thus, the behaviour of Rydberg atoms closely resembles the behaviour of the

hydrogen atom. The large separation between ionic core and the valence electron

also results in the atom possessing a large dipole moment. In turn, this leads to

an extreme sensitivity to electric fields, as well as strong interactions with nearby

Rydberg atoms [1].

Due to these properties, as well as their long coherence times, Rydberg atoms

are an appealing quantum mechanical system for further study. In recent years,

many interesting properties of Rydberg atoms have been uncovered. For instance,

recent work has shown the existence of many-body effects, in which the interactions

between atoms may not be treated as a collection of binary interactions between

atoms [2, 3]. An example of this is the so-called Rydberg-blockade, in which the

1



2 CHAPTER 1. INTRODUCTION

Excite AtomsCool ("Trap") Atoms Wait (Delay Time)Ionize Atoms

0.0 0.5 1.0 1.5 2.0 2.5

Time H ΜsL
Figure 1.1: A timing diagram of the experiment considered in this thesis.

excitation of 1 atom to a Rydberg state prohibits the excitation of surrounding

atoms [4]. Other groups have studied the behaviour of easily controllable, longe

range interactions between Rydberg atoms, known as dipole-dipole energy trans-

fer [2,5,6]. Additionally, there has been significant work on the potential for Rydberg

atoms to be used in the physical realization of a quantum computer [4, 7–10].

1.2 The Experiment

We wish to probe the behaviour of Rydberg atoms in response to the presence

of a changing electric field. To achieve this, 85Rb atoms are cooled to approximately

100 µK [5]. The atoms are excited to a coherent superposition of Rydberg states

in the presence of a very small electric field. After a small delay time intended

to allow the superposition to evolve, a rapid pulse of the electric field is applied.

At very large values of the electric field, the excited electrons are pushed off their

atoms, across an intervening empty space, and into a detector, where the current

produced is measured. This information is summarized in a timing diagram of the

experiment, shown in Figure 1.1

The atoms must be cooled to such low temperatures in order to avoid the oc-

currence of significant decoherence during the delay time that would result from

interatomic collisions. The low kinetic energy of atoms at this temperature allows

for approximating them as stationary, as their motion over the course of the ex-
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periment is small relative to their interatomic distances. By minimizing the kinetic

energy, we minimize the probability of interatomic collisions occuring, and thus,

the decohererence in the initial superposition. To achieve these temperatures, laser

cooling techniques are used to cool Rydberg atoms in a Magneto Optical trap, with

106 atoms confined to region of diameter .5 mm [11].

We choose to excite the atoms to a superposition of the 46D5/2, |mj| = 1
2

and

the 46D5/2, |mj| = 3
2

states in the presence of a small, initial electric field.1 The

excitation scheme used is depicted in Figure 1.2. The cooling lasers constantly

cycle the atoms between the 5S and 5P states. The lasers tuned to this transition

possess a wavelength of λ = 780 nm. This also functions as the first step in the

excitation scheme. Following this, the 5P atoms are excited to the 5D state using a

776 nm laser. Atoms in the 5D state will eventually fluoresce to the 6P state, with

a lifetime on the order of 200 ns. From the 6P state, the atoms are finally excited

to the selected 46D state using a 1022 nm laser. Due to energy time uncertainty, by

confining this pulse in time, we are able to increase its bandwidth. So, we confine

the pulse in time so that the uncertainty in energy covers both the 46D5/2, |mj| = 1
2

and the 46D5/2 |mj| = 3
2

states, thus achieving a coherent superposition [12].

By measuring the current produced by the atoms, we are approximately mea-

suring the energy states of the atom at ionization, as higher energy atoms tend

to ionize before lower energy atoms. Thus, electrons from higher energy atoms are

expected to be detected earlier in time than those from lower energy atoms. Prelim-

inary experimental investigations into similar problems have shown evidence that

the energy distribution possess a large dependence on the delay time. We aim to

investigate this further by treating the delay time as our independent variable. The

1For a discussion of the physical interpretation of these labels, see Section 3.1
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Figure 1.2: The excitation scheme used to excite to a superposition of Rydberg
states.

energy distribution is also known to be sensitive to the rate at which the electric

field is increased, known as the slew rate. For this experiment, a constant slew rate

of 1 V/cm·ns is used.

The primary work of this thesis is to develop the necessary tools to simulate

this experiment. We then compare the results of this simulation to those attained

in the experiment, which is performed by our colleagues at Bryn Mawr College.



Chapter 2

Theoretical Introduction to the
Stark Effect

2.1 A Model

To begin calculating the energy distribution of the atoms at ionization, we must

first understand how the energy states of the atom themselves behave when sub-

jected to an electric field. In order to probe the qualitative behaviour of the en-

ergy states of the atom, we first develop a simple model of two interacting energy

levels [13]. Consider a system consisting of 2 energy states: |1〉 and |2〉. The

non-interacting Hamiltonian, Ĥ0, will be defined by the eigenvalue equations,

Ĥ0|1〉 = E1|1〉 (2.1)

Ĥ0|2〉 = E2|2〉. (2.2)

Using the ordered basis {|1〉, |2〉}, this can be written in matrix form as

H0 =

 〈1|Ĥ0|1〉 〈1|Ĥ0|2〉

〈2|Ĥ0|1〉 〈2|Ĥ0|2〉

 =

 E1 0

0 E2

 . (2.3)

In order to account for the presence of an electric field, we must introduce a

5
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perturbation term to the Hamiltonian. In atomic units, such a Hamiltonian takes

the form

Ĥ = Ĥ0 + V̂ (2.4)

where V̂ is the perturbation matrix [14]. We will suppose that the diagonal terms

of this matrix are constant with the electric field, and the off diagonal terms are

linear in the electric field.1 The perturbed Hamiltonian can thus be written as

H =

 ω1 δe−iφ

δeiφ ω2

 , (2.5)

where δ has an implied linear dependence on the electric field, F , and we have made

the definitions

ω1 = E1 + 〈1|V |1〉 (2.6)

ω2 = E2 + 〈2|V |2〉 (2.7)

〈1|V |2〉 = δe−iφ, (2.8)

which are consistent with the assumptions made about the form of V . This Hamil-

tonian will serve as our model of two interacting energy states.

1Understanding why these conditions are imposed on the perturbation matrix requires looking
ahead to (3.4), the actual perturbation matrix for Rydberg atoms in an electric field.
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Electric Field ®

E
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y

®

Figure 2.1: A plot of the eigenenergies of our idealized model of interacting
energy states. In red is the plot of our first eigenvalue, E′1. In black is the plot
of our second eigenvalue, E′2. See (2.9) and (2.10).

2.2 Interpreting the Model

We can easily solve for the eigenvalues of the matrix in (2.5) to find the observ-

able energies of this system. They are:

E ′1 =
1

2

(
ω1 + ω2 +

√
(ω1 − ω2)2 + 4δ2

)
(2.9)

E ′2 =
1

2

(
ω1 + ω2 −

√
(ω1 − ω2)2 + 4δ2

)
. (2.10)

In Figure 2.1, we show these eigenvalues as a function of the electric field. This

model captures two essential features that are observed in Rydberg atom systems.

First, we see that the energy levels possess a nontrivial dependence on the electric

field. Consequently, in our experiment, as the electric field surrounding the Rydberg

atom changes, so too will the values of its observable energies. This is known as the

Stark effect. The second feature seen in Figure 2.1 is that, while the energy levels

are initially on a trajectory that appears to have them cross, they “bend” away

from each other. This is known as an avoided crossing. The significance of avoided

crossings is explained in Chapter 5.





Chapter 3

Numerically Computing Stark
Maps

3.1 The Hamiltonian of a Rydberg Atom

We now compute the Hamiltonian, and thus, the eigenenergies and energy eigen-

states, of a Rydberg atom subject to an electric field. We first review the conven-

tions used when describing the energy levels of an atom. For our purposes, there

are four quantum numbers required to fully specify an energy level of an atom in

the presence of an electric field. The first of these is the principle quantum num-

ber, n, which is a measure of the radial distance from the nucleus of the atom.

The second of these, `, is the orbital angular momentum of an electron inhabiting

that energy state. In most cases, we will use the standard S, P,D, F, ... notation to

denote orbital angular momenta of 0, 1, 2, 3, .... The third quantum number, j, is

the total angular momentum of an electron in the energy state. The total angular

momentum is given by j = l + s, where s is the spin of the electron. The j value

will be denoted by a subscript on the letter giving the orbital angular momentum.

Finally, the last quantum number, mj, measures the projection of the total angular

momentum along the axis aligned with the electric field. We will often use |mj|

rather than mj because, as we will see shortly, the sign of mj does not effect the

9



10 CHAPTER 3. COMPUTING STARK MAPS

measurable energies of the state for our purposes.

It is clear that any energy level may be specified by the ket |n, l, j,mj〉. Be-

cause the set of all such kets is orthonormal, we use this set as the basis for the

Hamiltonian of our atom. In order to find the Hamiltonian for a Rydberg atom, we

must evaluate (2.4). The unperturbed Hamiltonian is, unsurprisingly, defined by

the eigenvalue equation

Ĥ0|n, l, j,mj〉 = En,l|n, l, j,mj〉. (3.1)

Care must be taken in evaluating En,l. As explained in Chapter 1, the properties

of Rydberg atoms are often similar to those of Hydrogen, but at a larger scale. Thus,

an initial guess for the observable energies may be En ≈ −13.6
n2 eV. However, we also

expect small deviations from the hydrogenic case, as there is a small amplitude for

the valence electron to reside within the positively charged core of the Rydberg

atom, where deviations from the Coulomb potential of the Hydrogen atom are no

longer negligible. These deviations can be accurately accounted for using quantum

defect theory [1]. Quantum defect theory predicts that the energy of an unperturbed

state is described by the equation

En,l = − 13.6

(n− δl)2
eV. (3.2)

The δl appearing in this equation are experimentally determined parameters that

depend only on the orbital angular momentum of the electron that are known as

the quantum defects. It follows from this equation that the matrix elements for the
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unperturbed Hamiltonian are given by

〈n, l, j,mj|H0|n′, l′, j′,m′j〉 = −δn,n′δl,l′δj,j′δmj ,m′
j

1

2(n− δl)2
(3.3)

where we have now begun using atomic units.

The perturbation matrix, V , is given by the potential of the interaction with the

electric field. For an electric field of magnitude F in the ẑ direction, the potential

energy of this interaction is given by V = Fz = Fr cos θ, where we have simply

casted to spherical coordinates to achieve the last equality. By adding in total δmj ,m′
j

and δl,l′±1 to enforce selection rules, and coefficients to cast the angular terms to

the same basis, we see that the matrix elements may be found using [15]

〈n, l, j,mj|V |n′, l′, j′,m′j〉 = δmj ,m′
j
δl,l′±1〈n, l|r|n′, l′〉F×∑

ml=mj± 1
2

〈l, 1

2
,ml,mj −ml|j,mj〉〈l′,

1

2
,ml,mj −ml|j,mj〉〈l,ml| cos θ|l′,ml〉. (3.4)

According to (2.4), we simply add (3.3) and (3.4) to find the Hamiltonian for our

system. Notice that this equation only depends on the |mj| rather than mj, so the

energy levels for the ±mj states are degenerate at all values of the electric field.

3.2 Solving for the Matrix Elements

Solving (3.3) and (3.4) to find the matrix elements of the Hamiltonian for the

perturbed system is quite challenging. First, we see that there is an overall δmj ,m′
j
,

so we may generate the Hamiltonians for each value of mj separately. We solve (3.3)

by using quantum defects attained from various sources [16–18].

To solve (3.4), we first consider the expression within the sum. The first 2 coef-
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ficients in the sum, 〈l, 1
2
,ml,mj −ml|j,mj〉 and 〈l′, 1

2
,ml,mj −ml|j,mj〉, are known

as Clebsch-Gordon Coefficients [19]. The last term in the sum, 〈l,ml| cos θ|l′,ml〉,

is the angular part of the matrix element. The analytic solution is [15]

〈l,ml| cos θ|l − 1,ml〉 =

(
l2 −m2

l

(2l + 1)(2l − 1)

)1/2

(3.5)

〈l,ml| cos θ|l + 1,ml〉 =

(
(l + 1)2 −m2

(2l + 3)(2l + 1)

)1/2

. (3.6)

The radial term, 〈n, l|r|n′, l′〉, is the only non-trivial part remaining. Writing

this as an integral yields

〈n, l|r|n′, l′〉 =

∫ ∞
0

R∗n,lrRn′,l′ r
2d r, (3.7)

where R is a solution to the radial part of the Schrödinger equation,

d2R

dr2
+

2

r

dR

dr
+ 2 (E − V )R− l(l + 1)

r2
R = 0, (3.8)

and the factor of r2 comes from the differential volume element [20]. We express

this equation with the variables x = ln r and X =
√
rR to get

d2X

dx2
= g(x)X. (3.9)

where g(x) =
(
l + 1

2

)2
+ 2(V − E)e2x [15]. A second order differential equation in

this form can be solved using the Numerov method [21]. Numerov’s method states

that, given two initial values for X

Xi+1 =
Xi−1

(
gi−1 − 12

h2

)
+Xi

(
10gi + 24

h2

)
12
h2
− gi+1

, (3.10)
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where gi = g(xi), and h is the step size. The boundary conditions imposed are x0 =

10−10 and x1 = 10−5, though the integration was quite insensitive to this. By

requiring that the squared modulus of the wave function integrated over all space

achieves unity, we find that the normalization constant, N , is given by

N =

(∫ ∞
0

X∗Xr2d r

)−1/2

. (3.11)

Writing (3.7) in terms of X, and casting the problem to the discrete regime, we

solve for the radial part of the matrix element with

〈n, l|r|n′, l′〉 =

∑
i

X∗iX
′
ir

2
i(∑

i

X2
i r

2
i

∑
j

X
′2
j r

2
j

)−1/2
, (3.12)

where we have used X = r1/2Rn,l and X ′ = r1/2Rn′,l′ . The information detailed in

this section allows us to solve (3.4), and, in conjunction with (3.3), find all matrix

elements of the perturbed Hamiltonian.

3.3 A Sample Stark Map

By diagonalizing the Hamiltonian solved for in Section 3.2, we may read the

eigenvalues off the diagonal elements to find the observable energies of a Rydberg

atom in the presence of an electric field. At a single field, this would result in the

energy level diagram of the atom. By solving for the eigenvalues at many fields,

we are able to observe the dependence of the energies on the electric field. Such a

plot, showing the energy level diagrams as a function of the electric field, is called

a Stark map. An example of a Stark map is shown in Figure 3.1.
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Figure 3.1: The Stark map for 85Rb around the n = 43 and n = 44 manifolds
for the |mj | = 1

2 states. Shows the dependence of the observable energies on the
applied electric field.

There is much to be said about Figure 3.1. First, as mentioned in Section 3.2,

we do not need to consider all mj states at the same time. Consequently, we have

only generated the Hamiltonians for the |mj| = 1
2

states here, though other values

of |mj| would generate nearly identical Stark maps. The exception to this is that

a few states may not be present in the map for larger |mj|, due to the constraint

that |mj| ≤ j for physical states.

Perhaps the most striking feature of Figure 3.1 is that, at relatively small values

of the electric field, many of the states appear to “fan” out as the field is increased.

There are 2 such “fans” visible in this figure, beginning at roughly E = −54.2 cm−1

and E = −56.7 cm−1. These are known as manifolds. Typically, a manifold is

composed of large l states, approximately the f states and above, of the same n

value. Shown here are the n = 43 (bottom) and n = 44 (top) manifolds. The states

that do not lie within a manifold are the lower angular momentum (s, p, d) states of

larger n values. These are detached from their manifold due to the large quantum
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defects observed for low ` states, which result from the larger amplitude for these

states to lie within the ionic core of the atom.

While at this scale it may be difficult to discern, when two adjacent states appear

to cross in this Stark map, they are actually deflecting away from each other. These

are the avoided crossings predicted by the model presented in Chapter 2.





Chapter 4

Introduction to Landau-Zener
Theory

4.1 Model of Population Dynamics at Avoided

Crossings

Thus far, we have studied the behaviour of the energy levels in response to

electric fields. We now ask the slightly different question, what happens to the

amplitude in these energy levels as the electric field is varied over time? This is

of significant importance when considering the ionization experiment describe in

Section 1.2, as answering this allows us to track the distribution of the amplitude

across the energy levels as the ionization pulse is applied.

To begin answering this question, we again return to the model of two energy

states subject to a perturbation, given by (2.5) [13]. For convenience, this equation

is repeated here.

H =

 ω1 δe−iφ

δeiφ ω2

 (4.1)

To see how this model Hamiltonian was developed, and the definitions being used,

17
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refer to Section 2.1. In this Section, we slightly change our interpretation of the

terms in this Hamiltonian. More specifically, we follow the reference and take the

〈1|V |1〉 and 〈2|V |2〉 terms in ω1 and ω2 to have a linear dependence on the electric

field, rather than δ [13].

The energy eigenstates available to the system are given by the eigenvectors of

this matrix. If we let |E ′1〉 correspond to the eigenvalue E ′1 and |E ′2〉 correspond to

the eigenvalue E ′2, then the eigenstates are given by

|E ′1〉 = cos

(
θ

2

)
e−

iφ
2 |1〉+ sin

(
θ

2

)
e

iφ
2 |2〉 (4.2)

|E ′2〉 = − sin

(
θ

2

)
e−

iφ
2 |1〉+ cos

(
θ

2

)
e

iφ
2 |2〉, (4.3)

where we have defined tan θ = 2δ
ω1−ω2

.

To quantitatively described the evolution of the amplitude in these states over

time, we must solve the time dependent Schrödinger equation

H|Ψ(t)〉 = i
∂|Ψ(t)〉
∂t

. (4.4)

Following Landau [22] and Zener [23], we propose the solution

|Ψ(t)〉 = C1(t)e−i
∫ t
0 ω1d t′|1〉+ C2(t)e−i

∫ t
0 ω2d t′ |2〉. (4.5)

By substituting this into (4.4) and decoupling the resulting differential equations,

we see that |Ψ(t)〉 is a solution if the constants C1 and C2 obey the differential
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equations

C̈1 − i(ω1 − ω2)Ċ1 + δ2C1 = 0 (4.6)

C̈2 + i(ω1 − ω2)Ċ2 + δ2C2 = 0 (4.7)

We may now solve for the probability of a system with a known initial state,

which we will choose to be |E ′2〉, to be found in |E ′1〉 at some later time. The

probability of this state being found in |E ′1〉 at a time tf is given by

Pr(|E ′1〉) = |〈Ψ(tf )|E ′1(tf )〉|2 (4.8)

where |Ψ(t)〉 satisfies the condition |Ψ(ti)〉 = |E ′2〉. If ω1 and ω2 evolve linearly with

time, ti = −∞, and tf = ∞, we may solve (4.6) and (4.7), and thus (4.8). This

yields the solution

Pr(|E ′1〉) = exp

−2π
dq
dt

δ2

d|ω1−ω2|
dq

∣∣∣
qc

 , (4.9)

where qc is the value of the parameter at which the crossing occurs [22,23]. This is

known as the Landau-Zener formula.

4.2 Solving the Landau-Zener Formula

In the idealized case explained in Section 4.1, we have seen that (4.9) may be

used to calculate the probability of a transition occurring when a state traverses an

avoided crossing. First, we note that the probability of a transition is not zero. In

the context of ionizing a Rydberg atom, this means that if an atom is prepared in a
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selected energy state, it may not ionize in that same state. To gain a greater intuitive

understanding of the implications of (4.9), we study the terms in the equation more

closely.

We were purposely vague about where exactly qc occurs. The natural definition

is that it occurs at the minimum in the separation of the perturbed energy levels.

To find this minimum, we set the derivative of the difference of the eigenvalues given

in (2.9) and (2.10) to 0. That is,

d
(√

(ω1 − ω2)2 + 4δ2
)

dq
= 0. (4.10)

Solving this, we find that at the crossing,

ω1(qc)− ω2(qc) = 0. (4.11)

We may then plug this result back into the expression for E ′1 − E ′2 to see that, at

the crossing,

E ′1 − E ′2 = 2δ (4.12)

This allows for any easy way to calculate the δ appearing in (4.9); we simply subtract

the perturbed energy values given by a Stark map, and divide the result by 2.

We next analyse the ω1 and ω2 term appearing in the Landau-Zener Formula.

We know that ω1 and ω2 are linear in q from their definitions. We must find two

points that lie on the line in order to fully describe it. We can evaluate the definition

of ω1, (2.6), at q = 0 to see that ω1(0) = E1. A second point on this line may be



4.2. SOLVING THE LANDAU-ZENER FORMULA 21

found using (2.9) and (4.11). This gives

E ′1(qc) =
1

2
(ω1(qc) + ω2(qc) + 2δ) (4.13)

= ω1 + δ (4.14)

⇒ ω1(qc) = E ′1 − δ, (4.15)

which is the point halfway between the perturbed energy states at the crossing.

Using similar deductions to find points on ω2, we may plot the lines for ω1 and

ω2, as shown in Figure 4.1. We see that we can easily gather difference in the

slope of these lines from a Stark map, providing us with the d|ω1−ω2|
dq

term. The

final term involved in the Landau-Zener equation is dq
dt

, which is a parameter set

by the experimenter known as the slew rate, which is the rate at which the electric

field is being increased. Thus, all terms necessary to evaluate the Landau-Zener

formula are easily attainable from a Stark map, or, in the case of the slew rate,

experimentally determined.

The interpretation of the terms in this equation also allows us to discuss its

qualitative interpretation. From the δ term appearing in the numerator of the

exponential, we see that crossings with a very small energy difference between the

two states have an increased probability of a diabatic transition occurring relative

to crossings with a smaller energy difference. Moreover, from the d|ω1−ω2|
dq

term, we

see that if the states are approaching each other very rapidly, then the probability

of a diabatic transfer also increases relative to states undergoing a more drawn out

crossing. Finally, the dq
dt

term shows that, if the experimenter ramps the field faster,

then there is a greater probability of a diabatic transfer occuring. The probability

of a diabatic transfer occurring is incredibly sensitive to all of these terms, as they
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Figure 4.1: In black, solid lines, we have again plotted the eigenenergies of
our idealized model of interacting energy states. In grey, dashed lines, we have
plotted ω1 and ω2.

appear in the exponential of 4.9.

4.3 Evolving a State through Ionization

We now present an algorithm for evolving a state through ionization, using the

results of Section 4.1 and Section 4.2 [24]. Suppose we are given an the initial state

of a Rydberg atom. We then subject the atom to an increasing electric field until

the electric field strong enough to ionize the atom. Pictorially, we view this as

beginning with a state on the left side of our Stark map (see Figure 3.1). As the

electric field is increased, we sweep across the map from left to right, until we reach

the electric field at which the atom ionizes1.

We see that, as we perform this sweep, a state will traverse many avoided cross-

ings, and thus, the amplitudes will spread over many states. The amplitude residing

in each state could be calculated using the Landau-Zener formula as follows. First,

we step through the field from left to right. Then, if an avoided crossing is en-

1For a more detailed discussion of where this ionization takes place, see Section 5.2
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countered, we calculate the probability of a transfer occurring at the crossing, using

the Landau-Zener formula and the methods from Section 4.2. We then use that

probability to reallocate the amplitude in our state vector into the correct states.

Following this, we evolve the phases of each component of the state vector, using

the energy of the state at the current value of the electric field. Finally, we repeat

this process until the state is ionized. An implementation of such an algorithm has

been performed in Ref. [24].

Many difficulties are encountered when applying this approach to our problem.

The first problem is that the Landau-Zener formula provides no phase information.

That is, it does not give the amplitude of a transfer occurring, rather, it gives

the squared modulus of it. An attempted remedy to this solution is numerically

integrating (4.6) and (4.7), rather than using the Landau-Zener formula. However,

the phase was found to be incredibly sensitive to our arbitrary choice of where

to start and end the integration. The second problem encountered was that the

Landau-Zener formula was derived for an idealized case that is not often realized

in our Stark map. This causes us to be sceptical of results attained in the less than

ideal cases that are found throughout the Stark map. Finally, there are instances in

the Stark map where we see three or more energy levels undergoing avoided crossings

at the same time. The Landau-Zener formula offers no qualitative or quantitative

insight into such cases. While there have been quantitative descriptions of multilevel

crossings, the calculations are significantly more complicated [25–27]. For these

reasons, a different approach is needed to evolve our state through ionization.





Chapter 5

Alternative to Landau Zener
Theory

5.1 The Algorithm

We now present a new algorithm for evolving the state through ionization, fol-

lowing the approach taken in Ref. [28]. The Hamiltonian of an atom subject to

a changing electric field is quite clearly time dependent.1 However, over a small

time scale, the Hamiltonian may be approximated as constant in time. From non-

relativistic quantum mechanics, we know that for a time independent Hamiltonian,

states are evolved through time by applying the time evolution operator, or

|ψ(t)〉 = e−iĤt/h̄|ψ(0)〉. (5.1)

So, to evolve the initial state in time, we approximate the Hamiltonian as constant

over a short time step ∆t using (5.1). That is, we use the approximation

|ψ(t0 + ∆t)〉 = e−iĤ(t0)∆t/h̄|ψ(t0)〉. (5.2)

1See (3.4)

25
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Beginning with a given initial state vector, we iteratively apply this formula until

we reach a time where the atom is considered to be ionized.

This algorithm has many advantages over the algorithm explained in Section 4.3.

First, the phase information need not be dealt with explicitly, as (5.2) deals directly

with amplitudes rather than probabilities, unlike the Landau-Zener formula. Ad-

ditionally, though we know avoided crossings are the areas where most population

transfer occurs, they too do not need to be dealt with explicitly. So, we do not need

to worry about cases where the crossings are less than ideal, or cases where three

or more states are interacting at the same time. Finally, all parts of this problem

are “embarrassingly” parallel, which leads to a tractable computation time. This

will be explained more in the following section.

While the details of performing the computation are explained in the next sec-

tion, we first would like to justify its use. To test this algorithm, we have selected a

particularly well behaved avoided crossing from our Stark map and have calculated

the probability of a diabatic transfer occurring using this algorithm. In Figure 5.1,

we compare these values to the probability of transfer given by the Landau-Zener

formula, using many different values of the slew rate. We see very good agreement

between the two methods, especially at large slew rates. Because the time step of

the numerical calculation is set to the resolution of the Stark map divided by the

slew rate, at lower slew rates, the time step increases. This is likely the source of

disagreement between that is observed for small slew rates.

5.2 Performing the Computation

There are two steps to solving (5.2): Generating the time evolution operator,

and applying it to our state. We first generate all the time evolution operators. In
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Figure 5.1: The probability of a diabatic transfer occurring as the system is
evolved through an avoided crossing for many different slew rates. The blue dots
show the probability of transfer given by the Landau-Zener formula. The red dots
show the probability of transfer given by the algorithm described in Section 5.1.

order to evolve our state in time, we must ensure that the time evolution operators

are given in the same basis as |ψ〉. To do this, we choose to time evolve in the basis

of eigenstates of the Hamiltonian when no electric field is applied, or the zero field

basis. This is achieved by performing the matrix exponentiation in the current field

basis, and then transforming the result to the zero field basis, using the formula

U0(t0) = S0e−iHc(t0)∆t/h̄ST0 . (5.3)

In this equation, the subscript 0 denotes matrices in the zero field basis, the subscript

c denotes matrices in the current field basis, and S is the matrix of eigenvectors of

H(t0). As the matrices may be quite large, both generating H and performing (5.3)

can potentially require a large amount of time to compute. However, the time evo-

lution operators may be generated in parallel quite easily, as they are independent

of each other. This significantly reduces the computation time required.

Following the generation of the time evolution operators, we evolve the state
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through time using (5.2), with our newly evaluated time evolution operators. For

the sake of optimizing computing time, this is done as the time evolution operators

are being generated. Alternatively, this could also be done in parallel by multiplying

sequential time evolution operators together before multiplying by the state vector.

That is, we can view the iterative use of (5.2) as evaluating the following equation:

|ψ(tf )〉 = U(tf −∆t)U(tf − 2∆t)...U(t0 + ∆t)U(t0)|ψ(0)〉 (n times), (5.4)

where n is the number of time steps involved in the calculation. By sectioning the

multiplication of time evolution operators on the right hand side and multiplying

them together in order, we could potentially perform the evolution of the state in

parallel.

We have not yet made rigorous the notion of where ionization occurs, and thus,

when to terminate our program. One approximation is given by the classical ion-

ization limit, given by

Eionization = −6.12
√
F (5.5)

where energy is measured in cm−1 from threshold, and the electric field is measured

in V/cm. Currently, we model ionization as occurring at a single electric field for all

energy states near the area where most of the population encounters the classical

ionization limit. In the near future, we plan to implement a more realistic model of

this ionization.2

2See Chapter 7.
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5.3 The Detector

In the next chapter, we will present the result of our calculation, and compare

them to the experimental results when possible. In order to perform this compar-

ison, though, we must be able to model the detector used in experiment. While

admittedly crude, the model used is explained briefly below.

First, we assign a Gaussian distribution to all elements in both the |mj| = 1
2

and

the |mj| = 3
2

state vectors at ionization. These Gaussian peaks are assigned such

that the area beneath each peak is given by the squared modulus of the amplitude

in the corresponding state. Additionally, the mean of each peak is set to occur

at the field value where the amplitude in that state had ionized, according to the

classical ionization limit. The standard deviation, σ, of the distribution allows us

to parameterize the uncertainties in the field at which the atom is ionized and the

arrival time at the detector.

After defining the Gaussian peaks, we numerically integrate over all space, sum-

ming the amplitudes from all peaks from both the |mj| = 1
2

and the |mj| = 3
2

state

vectors. To perform this numerical integration, we must choose a finite ∆x as the

integration variable. This parameter may be viewed as a measure of how near in

ionization field, or equivalently, arrival time at the detector, two amplitudes must

be in order to display interference effects. The parameters ∆x and σ are chosen to

provide a best fit to the experimental data.





Chapter 6

Results

6.1 Path to Ionization

In this chapter, we present the results of our simulation juxtaposed with exper-

imental results attained at Bryn Mawr College. In our simulation, we have consid-

ered all states with n values between 42 and 47, with all physical n = 48, 49, 50 S,P ,

and D states included as well. States excluded from the calculation did not signif-

icantly interact with any state that possessed a substantial amount of amplitude

before ionization occurred, and were thus excluded to decrease the computation

time. To initialize the wave function, we set the n = 46D5/2 state to unity in both

the |mj| = 1
2

and |mj| = 3
2

states. It was found that any initial phase accrued dur-

ing the delay time carried through the ionization process, so, the state was evolved

through the ionization ramp before applying this phase difference. We have used a

constant slew rate of 109 V/cm·s, which is approximately equal to that used by the

experimenters at Bryn Mawr.

The dynamics of the population during the ionization ramp are shown in Fig-

ure 6.1. On the left of the figure, we see that most of the population remains in its

initial state until it collides with the manifold, at approximately 15 V/cm. At this

point, the population splits into two main groups of energy levels, and these groups

31
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Figure 6.1: The amplitude tracked through the ionization ramp on a Stark map.
The states in blue colors contain |mj | = 1

2 population, and those in red colors
contain |mj | = 3

2 population. The black line towards the right of the figure gives
the classical ionization limit, which approximates the location where ionization
occurs.

remain approximately isolated until the classical ionization limit is reached.

6.2 Ionization Currents

We now attempt to reproduce the current measured in experiment with our

simulation. To produce an ionization current from our simulation results, we use

the model of the detector given in Section 5.3. The results are shown in Figure 6.2.

We observe a two peak structure in both results, which are in qualitative agree-

ment. In retrospect, we could have predicted this two peak pattern from viewing

Figure 6.1. In the discussion of that figure, we noted that the population had split

into two groups which remained isolated until ionization. In Figure 6.2, each peak

corresponds to one of these groups. More specifically, the left peak in the ionization
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Figure 6.2: Left: Experimental Ionization Current. Right: Simulated Ionization
Current. A two peak distribution is observed.

current, which arrived at the detector earlier in time, corresponds to the “upper”

group of energy levels, as the states of higher energy ionize first. Likewise, the right

peak in the ionization current corresponds to “lower” group of energy levels.

In generating Figure 6.2, we have plotted the ionization current for a single delay

time. Next, we wish to observe how the ionization current changes as the initial

phase difference is varied. To do this, we quantify the size of each peak by the area

it encloses. The integration boundaries for each peak are shown by the colors in

Figure 6.2. In Figure 6.3, we show how the size of the peaks depend on the initial

delay time in both the experimental and simulated results.

Again, we observe a qualitative agreement between the simulated and experi-

mental results, with the exception of a lack of decoherence effects observed in the

simulation, which is to be expected. We also see that, as the delay time increases,

the size of the peaks experience an oscillation that is π out of phase with each

other, which is reminiscent of an interference experiment. This is discussed further

in Section 6.4.
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Figure 6.3: Left: Size of the peaks in the ionization current observed in experi-
ment. Right: Size of the peaks in the simulated ionization current. We see π out
of phase oscillations in both cases.

6.3 Comparison of Oscillation Frequencies

We know that the phase arises from the ei∆Et/h̄ term from time evolving the

initial state, where ∆E is the separation between the states at the initial electric

field. So, we expect the frequency of the oscillations in the peak size to increase as

∆E increases. In Figure 6.4, we show a Stark map of the area between 0 V/cm and

1 V/cm that includes the two states in the initial superposition. We see that, as

the electric field increases, so does the energy difference between the states. Thus,

we expect the frequency of oscillations in the peak size to also increase as the initial

field increases.

In Figure 6.5, we compare the oscillation frequencies of 1 of the peaks in the

ionization current for many different initial fields for both the experimental and

calculated results. It is clear in both the experimental and simulated data that, as

the initial electric field increases, so does the frequency of the oscillations in the
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Figure 6.4: The low field Stark Map of the states in the initial superposition.
The state in red is the 46d, j = 5

2 , |mj | = 1
2 state. The state in blue is the

46d, j = 5
2 , |mj | = 3

2 state.

ionization current, as expected. Though quantitative agreement is not observed,

the ratios between the frequencies were found to be equal.

6.4 Discussion and Interpretation

As we have hinted earlier, we interpret this experiment as an interference exper-

iment, similar to a Mach-Zehnder interferometer [29, 30]. In Figure 6.6, we show a

diagram of a Mach-Zehnder interferometer.

There are three key steps in an experiment using a Mach-Zehnder interferometer

that lead to an interference pattern. First, the amplitude is split into two groups.

Second, a phase difference develops between the two groups of amplitude. Third,

the groups of amplitude are brought back together. For example, in the case of

a traditional Mach-Zehnder interferometer, the first beam splitter separates the

amplitude into 2 groups, the different path length allows a phase difference to
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Figure 6.5: Comparison of the frequency of the oscillations observed for dif-
ferent values of the initial electric field. Oscillations for an initial field of
F = .18975 V/cm are shown in green, F = .276 V/cm are shown in purple,
and F = .3707 V/cm are shown in blue.

Figure 6.6: A Mach-Zehnder interferometer.The possible paths the amplitude
can take is indicated by the black lines. The blue, dashed lines represent 50/50
beam splitters. The red, solid lines represent perfect mirrors.
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develop, and finally, the last beam splitter recombines the two groups of amplitude.

To make the analogy to the Mach-Zehnder interferometer explicit, in our ion-

ization experiment, the excitation of the initial superposition splits the population

into two groups, the |mj| = 1
2

and |mj| = 3
2
, analogous to the first beam splitter.

Then, due to the energy difference between the states, the delay time allows for a

phase difference to develop between the two states, which is analogous to the dif-

ferent path length in each arm of the Mach-Zehnder interferometer. Finally, when

the amplitude is ionized, it recombines with the amplitude ionized from the other

|mj| states, serving as the second beam splitter in a Mach-Zehnder interferometer.

Thus, we see that this ionization experiment can be conceptually understood as a

Mach-Zehnder interferometer.





Chapter 7

Future Work

7.1 Treatment of Ionization

The classical ionization limit is a quite poor approximation to where ionization

occurs. While we have demonstrated qualitative agreement with the experimental

results despite this, we would like to implement a more formal treatment of ioniza-

tion. We plan to do this by calculating the ionization rate of each state in our Stark

map, and using this rate to remove the appropriate amount of amplitude from our

wave function when continuing to the next time step in the evolution. However,

such a precise treatment is likely not needed. We believe that simply waiting to

remove the amplitude from our state vector until the ionization rate reaches some

threshold would serve as a good approximation of the process.

For a state expressed in the parabolic basis, the ionization rate, Γ, is given by

the equation [28]

Γ =
(4R)2n2+m+1

n3n2!(n2 +m)!
exp

[
−2

3
R− 1

4
n3F (34n2

2 + 34n2m+ 46n2 + 7m2 + 23m+
53

3
)

]
.

(7.1)

In this equation n1,n2,n, and m are the parabolic quantum numbers, and R =

(−2E)3/2

F
, where E is the energy and F the applied electric field. The quantity E
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may be calculated using the perturbative methods found in Ref. [31].

In order to perform this calculation, we must be able to change the basis of

our state vector from the |n, j,mj, `〉 basis to the parabolic |n, n1, n2,m〉 basis. We

do this by first casting our wave function to the spherical |n, `,m,ms〉 basis, and

then converting from the spherical basis to the parabolic basis. To convert a state

|n, j,mj, `〉 basis to the spherical basis, we introduce the projection operator [32]

|n, j,mj, `〉 =
∑
m,ms

|n, `,m,ms〉〈n, `,m,ms|n, j,mj, `〉, (7.2)

where the sum is over m and ms that satisfy

mj = m+ms (7.3)

ms = ±1

2
. (7.4)

The coefficients 〈n, `,m,ms|n, j,mj, `〉 are Clebsch-Gordan coefficients, as intro-

duced in Chapter 2.

To convert from the |n, `,m,ms〉 basis to the |n, n1, n2,m〉 basis, we again intro-

duce the projection operator [1]

|n, `,m,ms〉 =
∑
n1,n2

|n, n1, n2,m〉〈n, n1, n2,m|n, `,m,ms〉, (7.5)

where the sum is over nonnegative n1 and n2 such that

n1 + n2 = n− |m| − 1. (7.6)
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The coefficients 〈n, n1, n2,m|n, `,m, s,ms〉 are given by the equation

〈n, n1, n2,m|n, `,m,ms〉 =

√
2

n
(−1)`P`,m

(
n1 − n2

n

)
. (7.7)

With the change of basis now complete, we may calculate (7.1) and proceed with

our treatment of ionization. It remains for us to implement these change of bases

into our program, and to gain a better understanding of the calculation of the E

term in (7.1), so that, too, may be implemented into our program.

7.2 Casting to a Quantum Control Experiment

Quantum control is an active area of research that seeks to govern the properties

of a quantum mechanical system [33]. By “inverting” our algorithm, we could

potentially create a quantum control experiment. To elaborate, currently, we submit

a set of parameters to our algorithm and an ionization current is returned. To

create a quantum control experiment, we must write a program that takes a desired

ionization current and returns the parameters required to produce that current,

thereby effectively controlling the energy state distribution of the atoms.

The potential to exhibit such control is easily seen in Figure 6.3; by choosing

an appropriate delay time, we are able to control the size of the peaks seen in

the ionization current. Of course, the parameter space extends well beyond the

delay time. For instance, it also includes the details of the initial superposition

and the shape of the ionization pulse as a function of time. A potential algorithm

for exploring this parameter space is a genetic algorithm, though little substantial

progress has been made toward this end [34].

With the equipment currently being used, the experimenters do not possess
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precise control over the shape of the ionization pulse. However, there is the potential

to use a new arbitrary waveform generator, which would give greater control over

the shape of the pulse, but would not be able to produce a large enough field to

ionize atoms in the 46D5/2 state. Consequently, as a first step in the direction of

creating a quantum control experiment, we plan to repeat the experiment done in

this thesis at states of much higher n value, where the experimenters may both

customize the shape of the ionization pulse, as well as create a large enough field

to ionize the atoms.
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