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Chapter 0

Abstract

This project develops mathematical models and computer simulations for cost-effective and

environmentally-safe strategies to minimize plant damage from pests with optimal biodiver-

sity levels. The desired goals are to identify tradeoffs between costs, impacts, and outcomes

using the enemies hypothesis and polyculture in farming. A mathematical model including

twelve size- and time-dependent parameters was created using a system of non-linear differ-

ential equations. It was shown to accurately fit results from open-field experiments and thus

predict outcomes for scenarios not covered by these experiments.

The focus is on the application to alfalfa agroecosystems where field experiments and data

were conducted and provided by Dr. Cory Straub of Ursinus College. Alfalfa is Pennsyl-

vania’s second-most important crop and the most cultivated forage legume in the world.

Predator and plant diversity can control potato leafhopper (PLH) damage to the host-plant

alfalfa. The pest damage is costly and chemical pesticides are unsafe. Ultimately, the

6



CHAPTER 0. ABSTRACT 7

framework provides polyculture planting strategies for farmers that are cost-effective and

environmentally-safe to minimize the alfalfa damage while maximizing farmer profits.

After the validation and sensitivity analysis of the model, the project focused on design-

ing control strategies. Steady state solutions were determined and a sensitivity analysis

established the relative importance of each parameter to reduce the plant damage. Optimal

control theory led to designing practical strategies regarding diversity levels to minimize the

plant damage while preserving plant nutritional efficacy and minimizing production costs.

More specifically, Bang-Bang controls were investigated using switching functions to produce

practical discontinuous functionals for the control parameters. Tools used include non-linear

systems of differential equations, Hamiltonians, adjoints, Pontryagin’s Maximum Principle,

and computer simulations.



Chapter 1

Introduction

1.1 Mathematical Modeling

Mathematical modeling is a method of simulating real-life situations with mathematical

equations to predict future behavior. In the last decade, it has gained momentum in biology

due to advances in dynamical systems, computing capabilities, and access to data. Biologists

and mathematicians have collaborated to better understand complex biology and ecosystems,

allowing mathematical models to guide expensive and extensive field experiments. In com-

parison to the experimental biologists’ conduct, a mathematician’s model built using data

from an experiment could provide useful information and analysis in a fraction of the time

and costs, without harming the environment. Predictions can be drawn from mathematical

models to guide field experiments to gain better and more efficient results.

8
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In our mathematical models, the relationships between different variables and parameters

are presented through a system of differential equations. Analysis and computer simulations

can then highlight the effects of the variables and parameter interactions as well as the

impact each parameter will have on the entirety of the modeled ecosystem. Scientists and

mathematicians utilize models for deeper comprehension and insight of a complex system

to provide informed predictions, utilize multidimensional data, and reveal characteristics

which would otherwise remain unknown, leading to better designs for future experiments

and breakthrough results.

1.2 The Ecological Problem

The alfalfa plant is Pennsylvania’s second-most important crop and the most cultivated

forage legume in the world [10]. The crop is a valuable source of nutrition for cows and

other farm animals. The problem begins when the potato leafhopper (PLH) pest eats the

leaves of the alfalfa plant. Their consumption causes the alfalfa to lose nutrition and turn its

usual green leaf pallets to yellow; a changed appearance called “hopper burn”. Reduction in

alfalfa produced and loss in nutrition mean farmers cannot benefit from, sell, or use as much

of their crop, a reduction in cows’ milk production, and a shorter lifespan of alfalfa before

needing to plant a new crop. Thus, farmers must endure severe monetary loss each year.

The damsel bug, Nabis sp., is a natural predator of the PLH, and can be used to control

the population of PLH and thus control the damage to the alfalfa. Other control methods

include the use of potentially dangerous pesticides to reduce the amount of pests present in
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their fields which is ecologically harmful, expensive, and can lead to a lower milk quality and

cost in revenue [4], [10].

By creating accurate mathematical models, it is possible to identify management strategies

that can reduce this plant damage while taking into consideration many factors, such as the

cost effectiveness, the impact on the environment, and the overall revenues for farmers.

1.3 The Resource Concentration and Enemies Hypothe-

ses

1.3.1 Background

In agriculture, farmers use monoculture fields, those that contain only one type of plant

species. However, pest outbreaks are common in this setting. One setting in which these

outbreaks are not usually observed is in a polyculture field, one that contains more than one

type of plant, including grasses. Polyculture fields are most commonly found in nature [4].

Farmers prefer monoculture fields because they yield more product than that of the polycul-

ture fields due to the extraneous plants intermingled with the main crop. It may be beneficial

to use well-designed polyculture as a farming technique to minimize pest damage. However,

there are obvious limitations on the use of polyculture by farmers, including predicting eco-

nomical and workload factors. Nevertheless, using polyculture as a planting technique may
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allow farmers to be able to lessen or eliminate the use of pesticides, prolong the lifespan of

the alfalfa plant field, reduce farming costs, and increase revenue through ‘organic’ labels for

the plants and milk produced.

1.3.2 The Resource Concentration Hypothesis (RCH)

The Resource Concentration Hypothesis (RCH) states that increased diversity in crops can

reduce herbivorous pest outbreaks. According to this theory, alfalfa planted in a monocul-

ture crop will endure more damage than alfalfa planted in a polyculture environment. The

diversity in the field should be able to control the population of the pest as the RCH states

that pests’ host plants should be more difficult to locate when intermingled with non-host

plants. A monoculture crop would cause an ever-increasing amount of pests, while a poly-

culture field would be able to control the population. With fewer pests, there should be less

damage [9].

1.3.3 The Enemies Hypothesis

The Enemies Hypothesis states that predators are more abundant and effective in areas of

higher plant diversity, thus controlling pest outbreaks. In other words, predators are more

effective in preying upon pests in polyculture environments rather than monoculture. There

are two parts to the theory: (a) predators kill herbivores at higher rates in polyculture fields

than in monoculture crops, and (b) the higher mortality rates in polyculture fields signifi-
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cantly reduce herbivore populations. Similar to the Resource Concentration Hypothesis, the

Enemies Hypothesis looks to the reduction or control of the pest population for the reduction

of plant damage [9].

1.4 Data Overview

Dr. Cory Straub of the Ursinus College Biology Department investigated the Resource

Concentration and Enemies hypotheses in field experiments. A mesocosm experiment was

conducted in which there were four experimental treatments, all with PLH present: one

monoculture without Nabis, one monoculture with Nabis, one polyculture without Nabis,

and one polyculture with Nabis. The polyculture contained alfalfa and orchardgrass. The

experimental results were consistent with the hypotheses that increasing plant diversity can

reduce herbivore abundance and protect plants from herbivores. In addition, Nabis did

provide greater protection to the plants in polyculture than in monoculture.

In summer 2011, the sample size was increased into twelve larger open-field plots. These

plots were planted in alternating monoculture and polyculture fields. The 2011 data are the

focus of this project. For more information on the actual experiments, see [2], [3].



Chapter 2

Open-Field Experiment

2.1 Model, Variables, and Parameters

In this project, deterministic models were utilized. A deterministic model is a mathematical

model in which outcomes are precisely established through known relationships among states

and events without any room for random variation. When changes of the variables are part

of the relationships, one of the best ways to create a model is to use a system of differential

equations.

In order to create the model, one must identify the variables and parameters. A variable

is a quantity that changes over time, while a parameter is a quantity that usually remains

constant over time. Next, the relationship between the different variables and parameters

must be found and described. A flow diagram illustrates how each variable affects its own

13



CHAPTER 2. OPEN-FIELD EXPERIMENT 14

dynamics and those of other variables. The dynamics of a system is the pattern of changes

that occurs over time. After the model is drawn, a system of differential equations is derived

and solved. The system of differential equations is non-linear and cannot be solved ana-

lytically. Numerical solutions can be produced and visualized using computer simulations.

Simulations are then compared to the actual graphs from the field experiments.

Initial assumptions of this mathematical model include:

1. Temperatures surrounding and within the system are ideal for the regular growth of all

three actors: Nabis, PLH, and alfalfa.

2. Neither the pest nor the predator migrates in or out of the system; all insects only leave

the system through death. This is consistent with the field experiments where the data were

collected in the middle of the field, far from the border.

3. For Nabis, eggs and nymphs will proceed to the next life stage at rates following natural

evolutionary and resources factors.

4. For the PLH, eggs and nymphs will mostly die because of predator consumption and will

not face mortality due to other causes.

5. Adult Nabis consume more adult PLH than Nabis nymphs do.

These assumptions are very reasonable and do not significantly affect the given results.

The three variables used in the model shown in figure 2.1 are the adult predator (Y ), adult

pest (X), and plant damage (Z). The twelve parameters are included below in table 2.1.
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Figure 2.1: Open Field Experiment Model - Flow Diagram

For more information regarding how the parameters were calculated, see [5].

Table 2.1: Open-Field Experiment Parameters

Parameter Description Monoculture Base Case Polyculture Base Case
a predator adult mortality rate 0.25 0.25
b predator adult consumption rate of PLH adults 0.24 0.24
c predator adult population gain from nymphs 0.12 0.12
d PLH adult mortality rate 0.385 0.3
g PLH adult mortality rate by adult Nabis harm 0.3 0.3
j PLH adult population gain from nymphs 0.5 0.512
k PLH adult benefit from alfalfa 0.0001 0.0001
l PLH adult consumption rate of alfalfa 0.0027 0.003
H Shannon-Weiner Diversity Index 0 ln(2)
m recovery coefficient of alfalfa in absence of damage 0.0001 0.0001
n carrying capacity 4 4
q actual plant diversity 0 varies

2.2 System of Differential Equations

Using modeling approaches, the following system of differential equations is derived:
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

dY
dt

= −aY + bX( Y
1+Y

)(1− Y
n

) + cY

dX
dt

= −dX − gY ( X
1+X

) + f(H)jX + k(X Z
1+X

)

dZ
dt

= lX −mZ

(2.1)

This system and model is based on those developed by M. Yahdi et al. in [5] and is the focus

of the project.

The model implicitly incorporates age-structure. This implicit age structure includes the im-

pact of plant diversity on the life cycles for both the predator Nabis and the herbivore-prey

PLH, especially through the impact of the plant diversity, f(H). Other modeling techniques

used to create this system of differential equations included logistic, scramble competition,

and the Allee effect. Scramble competition states that the survival and reproduction of indi-

vidual organisms declines as the density of the population rises. The Allee effect declines the

positive correlation between population density and individual fitness. The logistic approach

takes into consideration the limited resources and the impacts of the interactions on changes

of each population class. These modeling approaches allowed the models to accurately rep-

resent the dynamics between populations of the PLH and the Nabis as well as the alfalfa

damage and plant diversity.

For the models created, it is assumed that the only way to leave the system is through death.

No migration was considered in particular because sampling was used in the middle of the

crop in the open field experiments. For the PLH life cycle, only death due to predator con-

sumption is considered because of the shorter experiment time period. For more information

on how the model was created and additional models, see [5].
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2.3 Plant Diversity Index

The plant diversity index is a mathematical measure of plant diversity. This index is used

to develop functions that measure the impact of that index on the interactions between the

pest PLH, predator Nabis, and the plants in the ecological systems of alfalfa fields.

The Shannon-Weiner Diversity Index H is used in this model. The measure of the diversity

is based on species richness, the number present, species evenness, and the distribution of

the number of organisms per species. The index H is defined by

H = −
S∑
i=1

piln(pi)

where S is the total number of species in the community and pi is the proportion of S made

up of the ith species.

Since S = 1 for monoculture, H is zero. With S = 2 for our polyculture plot, alfalfa and

orchardgrass, with the minimum of 50% alfalfa, H = ln(2). For more information regarding

the calculation and use of the diversity index, see [5].



Chapter 3

Steady State Analysis

3.1 Background

Long-term behavior studies the steady states of the system. When simulations such as those

in Appendix A.1 are run, the system shows stable behavior over long periods of time. In

reality, the simulation shows the average value of these percentages so the actual values

fluctuate around these averages. However, since we are looking into the big picture of the

trends, these fluctuations are relatively small and thus the percentage values can be regarded

as accurate representations of the trends.

Studying the steady states of Y , X, and Z means each derivative is zero. This leads to the

study of equilibria of the system of differential equations, by solving for the derivatives equal

to 0 [8]. Therefore, the system of differential equations in (2.1) can be transformed into the

18
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system shown below:


0 = −aY + bX( Y

1+Y
)(1− Y

n
) + cY

0 = −dX − gY ( X
1+X

) + f(H)jX + k(X Z
1+X

)

0 = lX −mZ

(3.1)

This system of equations (3.1) is solved numerically and typical non-zero solutions for a

given set of parameters. One of the immediate goals of studying the long-term behavior is

to control the plant damage and to determine which parameters have the largest effect on

reducing plant damage and pest outbreaks.

3.2 Results

There are three possible steady state solutions, but only one makes sense in context. In the

first case, Y = X = Z = 0, predator, pest, and damage all equal 0. In this case, nothing is

happening in the system and it is not interesting to analyze. In the second case, both pest

and damage exist in system, but the predator is not present. This could be a possible case

in theory, but when the parameter values are substituted into the steady state solution, the

values are negative. Therefore, this is not considered as a possible case.

Finally, the third case, which is the only possible non-zero steady state, allows predator,

pest, and damage to cooperate. When specific monoculture and polyculture parameters are

used, the steady states solutions are given in figures 3.1, 3.2, and 3.3.
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Figure 3.1: Monoculture - Steady State Solutions with monoculture base case parameters

from Table 2.1. The values represent the magnitude of the respective variable.

Figure 3.2: Polyculture - Steady State Solutions with polyculture base case parameters from

Table 2.1. The values represent the magnitude of the respective variable.
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Figure 3.3: Monoculture and Polyculture Comparison - Steady State Solutions (with pa-

rameter values used in Figures 3.1 and 3.2). The values represent the magnitude of the

respective variable.
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It is unexpected that the damage is greater in polyculture than in monoculture due to the

increase in predators in a polyculture environment. However, if we take into consideration the

relative numbers of pests, predators, and damage, we find the following interesting results:

• There is a 6% decrease in the amount of damage per pest from monoculture to poly-

culture.

• There is a 17% increase in the number of predators per pest from monoculture to

polyculture.

The reduction in alfalfa damage per potato leafhopper is expected under the Resource Con-

centration Hypothesis. While Figure 3.3 shows that there is more damage in polyculture,

the pests are less efficient at causing damage. Also, the steady state analysis supports the

Enemies Hypothesis that the impact of the predator Nabis in reducing the alfalfa damage is

significantly more important and greater (about three times) compared to the PLH pest in

polyculture fields. A polyculture field is able to attract more predators for each pest.

For more information regarding the calculations behind the steady state analysis, see Ap-

pendix A.1.



Chapter 4

Sensitivity Analysis

4.1 Background

Mathematical models are built under uncertainties, including uncertainties in the parameter

values and in the choice of model structure scenarios. Uncertainties can also be related to

inherent randomness including the input parameters and output variables. It is important

to have a clear understanding of the types and contributions of uncertainty in the model to

give an elaborate interpretation of the model dynamics and results.

Sensitivity analysis techniques help in investigating the way uncertainties of “different or-

ders” propagate on the output variables and on the inference or conclusions which the model

is called to support. The analysis quantifies the variability of the outputs caused by uncer-

tainties in parameter inputs and the incomplete knowledge of the model. Sensitivity analysis

23
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aims at establishing the relative importance of the input factors (and in their ranges) involved

in the model, answering questions such as:

1. Which of the uncertain input factors/parameters are most influential?

2. If the uncertainty of one of the inputs could be eliminated, which one should be chosen

in order to reduce the variation without affecting the results?

3. Are there factors whose effect is so low that they can be confidently fixed anywhere in

their ranges of variation without affecting the results?

Sensitivity analysis can help the modeler to measure model adequacy and relevance, to

identify critical regions in the input space, to detect interactions between factors, to establish

priorities for research, and to simplify the model structure. An ideal sensitivity analysis

method should be sensitive to the range of variation of each input factor and to the shape

of its probability distribution. It should also operate simultaneously on all uncertain inputs

so that interactions among factors can be determined [1].

There are multiple types of sensitivity analyses. The local approach was utilized in this

project. In this approach, the effect of the variation of a single factor is estimated while

keeping all the others fixed at their nominal values. A more ideal approach would be to use

the global method which estimates the effect of the output of a factor when all the others are

varying, enabling the identification of interactions in non-linear and/or non-additive models.

Generally, global approaches allow the use of the model-independent methods as they do

not require assumptions of additivity or linearity. However, the reason that the global
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approach was not utilized was due to the fact that they are computationally expensive to

estimate, while local methods can be set to produce system derivatives with a number of

model simulations much lower than the number of derivatives to be estimated.

This chapter shows estimations of the effect of each parameter on the system for any random

variations in all factors. Advantages of this investigation include highlighting key parameters

that are important to the model while considering imprecisions. The goals include determin-

ing values and roles of the independent parameters, quantifying the influential parameters,

focusing data collection efforts to reduce uncertainty in those key parameters, and outlining

strategies to reduce alfalfa damage and pest outbreaks.

4.2 Results

By introducing a small change on one parameter, we want to measure the change at the

equilibria of the total alfalfa damage Z and then normalize these measures to determine

the parameters that are most sensitive. Given the fixed set of eleven parameters (plant

diversity q was excluded here), the sensitivity of the total alfalfa damage to a parameter y at

a given value y0 is given by the partial derivative ∂(Z)
∂y

evaluated at y0 and then normalized.

Numerical approximations represent the summary results when each parameter y is increased

or decreased slightly using a set of small percentage values. For methods, see Appendix A.2.

Based upon the sensitivity analysis (Figures 4.1-4.3), we conclude that parameters, d, PLH

adult mortality rate; b, Nabis adult consumption rate of PLH adults; and c, Nabis adult
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Figure 4.1: Monoculture - Normalized Sensitivity Analysis for the Base Case. Larger ampli-

tude indicates higher sensitivity. Positive indicates an increase in damage for an increase in

the parameter. Negative indicates a decrease in damage for an increase in the parameter.

Figure 4.2: Polyculture - Normalized Sensitivity Analysis for the Base Case. Larger ampli-

tude indicates higher sensitivity. Positive indicates an increase in damage for an increase in

the parameter. Negative indicates a decrease in damage for an increase in the parameter.
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Figure 4.3: Monoculture and Polyculture Comparison - Normalized Sensitivity Analysis for

the Base Case
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population gain from nymphs have the largest effect in decreasing the plant damage when

all of the parameters are at their mean values. It makes sense that the high PLH mortality

rate, d, and high Nabis consumption rate of PLH, b, would cause a positive change in the

ecosystem. Obviously, if PLH are dying due to Nabis consumption, there will be a decrease

in alfalfa damage. The other parameter, c, Nabis adult population gain from nymphs is a

little less trivial. When more adult Nabis mature, there will be more Nabis to consume PLH.

Since more PLH will be consumed, there will be less damage. Thus, it is crucial to find ways

to promote growth from nymphs to adults or at least to limit factors that can prevent that

growth such as monoculture and pesticides.

On the other hand, parameters a, Nabis adult mortality rate and j, PLH adult population

gain from nymphs have the largest effects in increasing the alfalfa damage. It is clear that

as Nabis die, there will be less to control PLH, resulting in an increase in alfalfa damage.

Finally, PLH adult consumption gain from nymphs, j, seems less trivial. As more PLH

age, there will be more pests to cause more damage. Thus, it is critical to find a way to

prevent PLH growth from nymphs to adults. However, if pesticides are that mean, this will

also affect the Nabis population and especially the parameter c described above. It is thus

crucial to evaluate the relative impact of such strategy (pesticides) on Nabis versus PLH in

monoculture and polyculture field experiments.

This analysis suggests pesticides will be counterproductive. Indeed, on one hand the pes-

ticides may kill both the PLH and the predator. On the other hand, the impact on the

mortality rate of the predator is higher than the impact on the mortality rate of the PLH.

Denote by A the increase in alfalfa damage for a slight increase in predator adult mortality
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rate a. Denote by D the decrease in alfalfa damage for a slight increase in the PLH adult

mortality rate d. It is clear from Figure 4.3 that A’s magnitude is significantly larger than

D’s. Therefore, there will be a greater increase in alfalfa damage if pesticides are used since

the predators’ death will be impacted more strongly.

Moreover, a comparison of the changes in sensitivity of the parameters between monoculture

and polyculture shows a higher sensitivity for the parameter a in polyculture fields. This

means that for a similar increase in the predator adult mortality rate a (for example via

pesticides), the alfalfa damage increase is worse in polyculture compared to monoculture

fields. On the other hand, an increase of the mortality rate of the PLH d leads to a smaller

decrease in alfalfa damage for polyculture versus monoculture fields. There is then more ev-

idence indicating that the impact of the pesticides on alfalfa damage is worse for polyculture

compared to monoculture fields.

In addition to the monetary, environmental and health costs and risks associated with pesti-

cides, these counterproductive aspects of pesticide usage in alfalfa fields represent significant

incentives for farmers to avoid or to reduce the use of pesticides. In a future work, field

experiments could be conducted to confirm these findings.



Chapter 5

Optimal Control Theory

5.1 Background

Optimal control, also known as dynamic optimization, is used with mathematical modeling

to find the best outcome using a predetermined goal or goals [6]. Many times, the problem

will include tradeoffs between two competing factors and where parameters are transformed

into control functions called control variables. Using optimal control, the state variable(s)

and control variables(s) are used to maximize or minimize the objective function. Ultimately,

optimal control determines the control(s) to optimize a specific set of goals in a dynamical

system.

The behavior of the underlying dynamical system is described by a state variable(s). We

assume that there is a way to steer the state by acting upon it with a suitable control

30
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(a) Non-Singular Bang-Bang Opti-

mal Control

(b) Singular Bang-Bang Op-

timal Control

Figure 5.1: Types of Optimal Control

function(s). The control enters the system of ordinary differential equations and affects the

dynamics of the state system. The goal is to adjust the control in order to either maximize

or minimize a given objective functional. A functional refers to a map from a certain set

of functions to the real numbers. Often, this functional will balance judiciously the desired

goal with the required cost to reach it and other constraints. The cost may not always

represent money, but may include side effects or damages caused by the control. In general,

the objective functional depends on one or more of the state and the control variables [6].

There are different approaches to optimal control analysis. Two types explored in this project

are Bang-Bang Optimal Control and Singular Optimal Control. Bang-Bang Optimal Control

is a type of control in which the control variables are either at their maximum or at their

minimum values in a discontinuous fashion, like a chemotherapy treatment schedule like in

Figure 5.1(a). Singular Optimal Control is typically a function that does not necessarily

take just maximum or minimum values of the control like in Figure 5.1(b).
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5.2 Optimal Control and Alfalfa Damage

Our goal is to minimize the alfalfa damage and pest abundance while also minimizing plant

diversity and the loss of production of alfalfa over a period of T days. The reason is that

farmers are reluctant to use polyculture farming approaches due to the belief of a loss in

productivity and revenues as described in Chapter 1. The goal here is to consider the

limitations of the benefit of polyculture and pesticide free alfalfa on increasing the revenues

even with reduced alfalfa yield. For this case, the objective function is given by

min[
∫ T
0

(A · Z(t) +B ·X(t) + C · (U(t) +Q(q(T )))] (5.1)

The variables inside the integrand are alfalfa damage, Z(t), and pest abundance, X(t). There

is one control, U(t) which is the increase in plant diversity, bounded by [0, 50] for 0% to 50%

alfalfa. The loss of productivity, Q(q(T )), measures how the system will be affected by using

a polyculture environment. The terminal time, T , is typically the time frame relevant to

farmers, ranging from one year to the whole life of an alfalfa crop before replanting. The

coefficients A, B, and C are relative costs associated with each respective variable.

The corresponding Hamiltonian, H, the integrand of the objective function plus the state

equations multiplied by the adjoint, is given by
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Γ = A · Z(t) +B ·X(t) + C · (U(t) + Q0(T )−Q(q(T ))
T

)

+λ1 · (−aY + bX( Y
1+Y

)(1− Y
n

) + cY )

+λ2 · (−dX − gY ( X
1+X

) + f(H)jX + k(X Z
1+X

))

+λ3 · (lX −mZ)

(5.2)

Each of the three variables is paired with a corresponding adjoint, λi, and determined from

the costate equations and the transversality condition given by



dλ1
dt

= −∂H
∂Z

dλ2
dt

= −∂H
∂X

dλ3
dt

= −∂H
∂U

(5.3)

λi(T ) = 0, (5.4)

where T is the final time and i is the index running through all three adjoints.

These adjoints can also be described through the following costate equations.



CHAPTER 5. OPTIMAL CONTROL THEORY 34



λ′1 = −λ1(−a+
bX(t)(1−Y (t)

n
)

1+Y (t)
+ c)− λ1Y (t)(

−bX(t)(1−Y (t)
n

)

(1+Y (t))2

− bX(t)
(1+Y (t))n

) + λ2X(t)g
1+X(t)

λ′2 = −B − λ1Y (t)b(1−Y (t)
n

)

1+Y (t)
− λ2(−d− gY (t)

1+X(t)

+(1− 0.1546[(1− q(1 + U(t)))ln(1− q(1 + U(t)))

+q(1 + U(t))ln(q(1 + U(t)))](1 + U(t))j + kZ(t)
1+X(t)

)

−λ2X(t)(gY (t)−kZ(t)
(1+X(t))2

)− λ3l

λ′3 = −A− λ2X(t)k
1+X(t)

+ λ3m

(5.5)

We want to check if this leads to a Bang-Bang Optimal Control. Using the equation for

the optimality condition which gives the boundaries of the constraints, u∗, we determine the

switching function, Ψ, which is defined by

Ψ = −∂H
∂u
. (5.6)

For this optimal control problem, Ψ is

Ψ = C + 0.1546λ2jq · ln( 1
q(1+U(t))

− 1). (5.7)

We need to know if Ψ can equal 0 at any point. In fact, we can prove that in our case, Ψ is

always positive. Indeed,

C + 0.1546λ2jq · ln(
1

q(1 + U(t))
− 1) = 0

=⇒ U(t) =
−C

0.1545λ2jq · ln( 1
q(1+U(t))

− 1)
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We see that the denominator is positive if ln( 1
q(1+U(t))

− 1) > 0 since all of the other terms

are positive parameters. Thus, we have

1

q(1 + U(t))
− 1 > 1

=⇒ 1

q(1 + U(t))
> 2

=⇒ 1

q
> 2(1 + U(t))

=⇒ 1

2q
− 1 > U(t)

Since q is the plant diversity, we know that it will be between 0% and 50%. Thus, we know

that if 0.01 < q < 0.50, then 0 < 1
2q
−1 < 49. We also know that q(1+U(t)) must be between

the same constraints since it still applies to the plant diversity. Thus, we have proven our

result and the optimality condition is reached when the plant diversity is at its maximum,

50% [6].

Using the above information and the computer simulation program, Matlab, three different

optimal controls were simulated, with initial diversity of 1, 10, and 20% diversity respectively.

5.3 Results

For each of the three cases, simulations were run with and without the optimality condition.

Figure 5.2 is a comparison of the 20% plant diversity with and without the control.

The benefit of optimal control is easily seen in these graphs. Using optimal control, the

overall damage is reduced and the quantity of predators and pests does not spike. Instead,
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(a) With Optimal Control

(b) Without Optimal Control

Figure 5.2: 20% Plant Diversity With and Without Optimal Control



CHAPTER 5. OPTIMAL CONTROL THEORY 37

the optimal control keeps everything to a minimum without pest outbreaks and spikes in

alfalfa damage. This means that in order to reduce the damage done to the alfalfa, our best

strategy would be to use plant diversity. Thus, for the remainder of this paper, the focus

will be on utilizing the optimality condition with plant diversity.

The next comparison run was on the costs associated with optimal control. For the damage,

pests, and increase in plant diversity, the associated costs, A, B, and C in equation (5.1),

could be altered to reflect monetary, environmental, societal, and labor costs. It was found

that regardless of the changes in the costs, the graphs remained identical. Thus, the only

major alteration to the system happens when we alter the initial conditions of the predator,

pest, and damage.

The final comparison is between varying plant diversities, 1%, 10%, and 20% as depicted

in Figure 5.3. For each case, we can observe the changes in the plant damage, pest, and

predator populations. The damage begins to increase, but eventually decreases in the end.

Both the predator and pest tend toward an equilibrium. As a whole, these simulations can

be compared to find an optimal solution that reduces plant damage. However, just looking

at the amount of damage reduced in each case setting is not enough to tell a farmer that it

will be the best strategy for his alfalfa field. Instead, we must compare this control of plant

diversity and loss of productivity to the farmer’s potential revenue.
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(a) 1% Plant Diversity

(b) 10% Plant Diversity

(c) 20% Plant Diversity

Figure 5.3: Comparison of Optimal Control in Varying Plant Diversities
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5.4 Extended Optimal Control

The final optimal control considered the extension to the alfalfa cutting cycle and life cycle.

Alfalfa is cut on average every twenty-five days during growth season. Each alfalfa planting

can be cut four times a year for four consecutive years. Thus, every alfalfa crop planted

can be cut approximately sixteen times. This optimal control looks into this sixteen cycle

process.

Four different scenarios have been created and shown in Figure 5.4. The first in Figure 5.4(a)

considers a system in which the alfalfa holds at a steady 10% for all four years. Thus, a

farmer would need to go into his plot and remove the extra growth of grasses over that of

10%. Figure 5.4(b) considers a system of alfalfa where grasses increase from 10% to 20%

incrementally over the course of the four years assuming the natural expansion of grasses

and plants other than alfalfa do not limit the growth of alfalfa. In both cases, there is a near

exponential growth of the pest population. Thus, the pests will continue to increase until

carrying capacity is reached. In this case, the plant damage will also continue to increase.

Thus, 10% plant diversity is not enough to limit pest damage.

In Figures 5.4(c) and (d), similar cases can be seen. Figure 5.4(c) considers a system in

which alfalfa holds at a steady 20% for all four years. The second in Figure 5.4(d) considers

a system of alfalfa where grasses increase from 20% to 40% incrementally over the course

of the four years assuming the natural expansion of grasses and plants other than alfalfa do

not limit the growth of alfalfa.
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(a)

(b)



CHAPTER 5. OPTIMAL CONTROL THEORY 41

(c)

(d)

Figure 5.4: Variations of pest and predator populations and level of damage with extended

optimal control theory to 4 years with 16 alfalfa cutting cycles
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In both of these cases, the pest population continues to decrease over time. In addition, while

the damage increases over the course of the four years, it begins to come to an equilibrium.

Between the two cases beginning with 20%, it is found that there is not much of a difference.

There is a slight benefit to allowing the other grasses to increase over the course of the

four years. There is a 3.61% decrease in damage, 8.37% increase in predators, and 21.81%

decrease in pests at the end of the four years. Thus, a farmer should allow these extra grasses

to continue their growth provided they do not begin to stunt the growth of alfalfa.



Chapter 6

Cost-Benefit Analysis

Using a Cost-Benefit Analysis, the supposed revenue for farmers can be calculated depending

on the planting strategies. As there is more plant diversity in the crops, there is a decrease

in nutritional values of the alfalfa-dominant mixed legume strands. However, when planting

alfalfa in a polyculture environment, there is less of a need to spray pesticides. If a farmer

can refrain from spraying pesticides, the alfalfa can be considered organic. When this organic

alfalfa is fed to cattle, along with other strategies (see [7]), the milk produced from those

cattle can be sold at an organic cost. Since organic milk sells at a higher price than regular

milk, there is still an increase in the revenue from selling less milk at a higher price. In 2013,

the average price of organic milk was $5.09 per gallon while the average for non-organic milk

was $3.46 per gallon in the United States.

In general, for a% of plants other than alfalfa, it is estimated that a
2
% is the decrease in milk

production per cow. Thus, the nutrition is cut approximately in half. Using this knowledge,
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one can calculate the overall expected revenues for farmers depending on the percent alfalfa.

We assume that regardless of the percent alfalfa the milk will be sold at an organic price.

On average, for 10% plant diversity, there is a 26.15% increase in revenue per each cutting

cycle while for 20% plant diversity, there is a 5.27% increase in revenue per each cutting

cycle. Figure 6.1 graphically shows the expected revenues for farmers (whether positive or

negative) at the end of each cutting cycle. The cost-benefit analysis is limited in the fact

that it only takes into consideration the revenue increases from selling the milk at an organic

price. It is expected that farmers would actually have a greater revenue increase from not

having to pay for pesticides or associated monetary costs. For more information regarding

the calculations of the cost-benefit analysis, see Appendix C.

This analysis must be further applied in relation to the optimal controls in order to find out

which planting strategy would increase the monetary gain the most in the agroecosystem

while minimizing the plant damage. Depending on a farmer’s crop and the initial amount

of predators and pests, we have an ability to calculate and make predictions as to which

planting strategy will reduce the most damage and increase revenue costs. Based on the

cost-benefit analysis, we want to keep the plant diversity kept at a minimum, but must

balance that strategy with the amount of plant diversity that will decrease the plant damage

enough in order to not have to spray pesticides.



CHAPTER 6. COST-BENEFIT ANALYSIS 45

(a)

(b)

Figure 6.1: Cost-Benefit Analysis



Chapter 7

Conclusion

The synthesis of mathematics and science is not a new concept. Mathematics is found in

the natural sciences, specifically physics and chemistry. This project shows the synthesis of

mathematics and biology. The model and analyses illustrate how the union of mathematics

and biology can solve complex problems.

With these results, our goals are fulfilled, the model was able to support biological findings

that polyculture is indeed a planting strategy to reduce pest abundance and plant damage.

In addition, the sensitivity analysis produced a new hypothesis that should be tested through

field experimentation - that pesticides will cause more damage when sprayed in polyculture

than in monoculture fields. This counterproductive use of pesticides stems from the fact

that pesticides may kill both the PLH and the predator. Because impact on the mortality

rate of the predator is higher than the impact on the mortality rate of the PLH, there

will be a greater increase in alfalfa damage if pesticides are used since the predators’ death
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will be impacted more strongly. It was also predicted that pesticide use is more damaging

in a polyculture field. These counterproductive aspects of pesticide usage in alfalfa fields

represent significant incentives for farmers to avoid or to reduce the use of pesticides. In a

future work, field experiments could be conducted to confirm these findings.

In addition, we found that it is critical to find a way to prevent PLH growth from nymphs

to adults. However, if pesticides are that mean, this will also affect the Nabis population. It

is thus crucial to evaluate the relative impact of such strategy (pesticides) on Nabis versus

PLH in monoculture and polyculture field experiments.

Proving that the system indeed takes that of Bang-Bang Optimal Control allows the opti-

mality condition will always be the maximum 50% plant diversity. In addition, using the

optimal control does allow a decrease in plant damage. However, extended work showed

that a farmer must balance the nutrition of the field from the plant diversity with expected

revenues. To do this, we considered a Cost-Benefit Analysis. Depending on a farmer’s crop

and the initial amount of predators and pests, we have an ability to calculate and make

predictions as to which planting strategy will reduce the most damage and increase revenue

costs. Based on these, we want to keep the plant diversity kept at a minimum, but must

balance that strategy with the amount of plant diversity that will decrease the plant damage

enough in order to not have to spray pesticides. At this time, it is difficult to conclude

one planting strategy that will work for all farmers because our model is limited to initial

population of the pests. Given this initial condition, one can use the model and analyses to

conclude the best strategy for a specific farmer and field.
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The results can be applied to different agroecosystems due to the inclusion of ranges of

the parameters and the interactive simulations. To determine accurate simulations of an

agroecosystem, specific data would need to be gathered in that system. With the sensitivity

analysis results, it is possible to focus data collection efforts to reduce uncertainty in key

parameters and outline strategies to reduce alfalfa damage and to prevent PLH outbreaks.

In conclusion, the project provides a framework for designing cost-effective and environmentally-

safe strategies to minimize alfalfa damage, determine critical parameters, and utilize the

enemies hypothesis and polyculture diversity. This model can be extended as more accurate

data has been collected.
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Appendix A

Maple Code

A.1 Steady State Analysis

f[1] := Y*(-a+b*X*(1-1/n)/(1+Y)+c);

f[2] := X*(-d-g*Y/(1+X)+e^(-.1882*H)*j+k*Z/(1+X));

f[3] := l*X-m*Z;

solve({X*(-d-g*Y/(1+X)+e^(-.1882*H)*j+k*Z/(1+X)) = 0, Y*(-a+b*X*(1-1/n)/(1+Y)+c) = 0, l*X-m*Z = 0}, [Y, X, Z]);

Case 1:

Y1 := 0;

X1 := 0;

Z1 := 0;

Case 2:

Y2 := 0;

X2 := -m*(-d+e^(-.1882*H)*j)/(-l*k+m*d-m*e^(-.1882*H)*j);

Z2 := -l*(d-e^(-.1882*H)*j)/(-l*k+m*d-m*e^(-.1882*H)*j);

monoculture substitution:

MX2 := subs(a = .25, b = .24, n = 4, c = .12, d = .385, g = .3, H = 0, j = .5, k = 0.1e-3, l = 0.27e-2, m = 0.1e-3, X2);

MZ2 := subs(a = .25, b = .24, n = 4, c = .12, d = .385, g = .3, H = 0, j = .5, k = 0.1e-3, l = 0.27e-2, m = 0.1e-3, Z2);

polyculture substitution:

PX2 := simplify(subs(a = .25, b = .24, n = 4, c = .12, d = .3, g = .3, H = ln(2), j = .512, k = 0.1e-3, l = 0.3e-2, m = 0.1e-3, X2));

PZ2 := simplify(subs(a = .25, b = .24, n = 4, c = .12, d = .3, g = .3, H = ln(2), j = .512, k = 0.1e-3, l = 0.3e-2, m = 0.1e-3, Z2));

Case 3:

Y3 := -(m*b*n*d+m*d*a*n-m*d*c*n+b*m*exp(-.1882*H)*j-l*k*a*n+l*k*c*n-exp(-.1882*H)*j*b*n*m-a*n*m*exp(-.1882*H)*j+c*n*m*exp(-.1882*H)*j-m*b*d)

/(m*d*a*n-a*n*m*exp(-.1822*H)*j-l*k*a*n+m*b*n*g-m*b*g-m*d*c*n+c*n*m*exp(-.1882*H)*j+l*k*c*n);

X3 := -n*m*(-a*g+a*d-a*exp(-.1882*H)*j+c*g-c*d+c*exp(-.1882*H)*j)/(m*d*a*n-a*n*m*exp(-.1882*H)*j-l*k*a*n+m*b*n*g-m*b*g-m*d*c*n+c*n*m*exp(-.1882*H)

*j+l*k*c*n);

Z3 := -l*n*(-a*g+a*d-a*exp(-.1882*H)*j+c*g-c*d+c*exp(-.1882*H)*j)/(m*d*a*n-a*n*m*exp(-.1882*H)*j-l*k*a*n+m*b*n*g-m*d*c*n+c*n*m*exp(-.1882*H)*j+l*k*c*n);

monoculture substitution:

MY3 := evalf(subs(a = .25, b = .24, n = 4, c = .12, d = .385, g = .3, H = 0, j = .5, k = 0.1e-3, l = 0.27e-2, m = 0.1e-3, Y3));

MX3 := evalf(subs(a = .25, b = .24, n = 4, c = .12, d = .385, g = .3, H = 0, j = .5, k = 0.1e-3, l = 0.27e-2, m = 0.1e-3, X3));

MZ3 := evalf(subs(a = .25, b = .24, n = 4, c = .12, d = .385, g = .3, H = 0, j = .5, k = 0.1e-3, l = 0.27e-2, m = 0.1e-3, Z3));

polyculture substitution:

PY3 := evalf(subs(a = .25, b = .24, n = 4, c = .12, d = .3, g = .3, H = ln(2), j = .512, k = 0.1e-3, l = 0.3e-2, m = 0.1e-3, Y3));

PX3 := evalf(subs(a = .25, b = .24, n = 4, c = .12, d = .3, g = .3, H = ln(2), j = .512, k = 0.1e-3, l = 0.3e-2, m = 0.1e-3, X3));

PZ3 := evalf(subs(a = .25, b = .24, n = 4, c = .12, d = .3, g = .3, H = ln(2), j = .512, k = 0.1e-3, l = 0.3e-2, m = 0.1e-3, Z3));
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GetPalette("HTML");

with(Statistics);

ColumnGraph([MY3, MX3, (1/10)*MZ3], title = "Case 3 - Monoculture", datasetlabels = ["Predator", "Pest", "Damage"], color = "Tomato");

ColumnGraph([PY3, PX3, (1/10)*PZ3], title = "Case 3 - Polyculture", datasetlabels = ["Predator", "Pest", "Damage"], color = "ForestGreen");

Array3 := Array([MY3, MX3, (1/10)*MZ3]);

Array4 := Array([PY3, PX3, (1/10)*PZ3]);

ColumnGraph([Array3, Array4], title = "Case 3", legend = ["Monoculture", "Polyculture"], datasetlabels = ["Predator", "Pest", "Damage"],

color = "Tomato" .. "ForestGreen");

Array5 := Array([MY3, PY3]);

Array6 := Array([MX3, PX3]);

Array7 := Array([(1/10)*MZ3, (1/10)*PZ3]);

ColumnGraph([Array5, Array6, Array7], legend = ["Predator", "Pest", "Damage"], datasetlabels = ["Monoculture", "Polyculture"],

color = "Purple" .. "Coral");

R := evalf((1/10)*PZ3/PX3);

S := (1/10)*MZ3/MX3;

(S-R)/R;

RR := evalf((1/10)*PY3/PX3);

SS := evalf((1/10)*MY3/MX3);

(SS-RR)/RR;

A.2 Sensitivity Analysis

For a:

a1 := Y*(-1.01*a+b*X*(1-1/n)/(1+Y)+c);

a2 := X*(-d-g*Y/(1+X)+e^(-.1882*H)*j+k*Z/(1+X));

a3 := l*X-m*Z;

solve({X*(-d-g*Y/(1+X)+e^(-.1882*H)*j+k*Z/(1+X)) = 0, Y*(-1.01*a+b*X*(1-1/n)/(1+Y)+c) = 0, l*X-m*Z = 0}, [Y, X, Z]);

Case 1:

Ya1 := 0;

Xa1 := 0;

Za1 := 0;

Case 2:

Ya2 := 0;

Xa2 := -m*(d-e^(-.1882*H)*j)/(-l*k+m*d-m*e^(-.1882*H)*j);

Za2 := -l*(d-e^(-.1882*H)*j)/(-l*k+m*d-m*e^(-.1882*H)*j);

Case 3:

Ya3 := -(100*m*b*n*d+101*m*d*a*n-100*m*d*c*n+100*e^(-.1882*H)*j*b*m-101*l*k*a*n+100*l*k*c*n-100*m*b*d-100*e^(-.1882*H)*j*b*n*m-101*m*e^(-.1882*H)*j*a*n

+100*m*e^(-.1882*H)*j*c*n)/(101*m*d*a*n-100*m*e^(-.1882*H)*j*a*n-101*l*k*a*n+100*m*b*n*g-100*m*b*g-100*m*d*c*n+100*m*e^(-.1882*H)*j*c*n+100*l*k*c*n);

Xa3 := -n*m*(-101*a*g+101*a*d-101*e^(-.1882*H)*j*a+100*c*g-100*c*d+100*e^(-.1882*H)*j*c)/(101*m*d*a*n-101*m*e^(-.1882*H)*j*a*n-101*l*k*a*n+100*m*b*n*g

-100*m*b*g-100*m*d*c*n+100*m*e^(-.1882*H)*j*c*n+100*l*k*c*n);

Za3 := -l*n*(-101*a*g+101*a*d-101*e^(-.1882*H)*j*a+100*c*g-100*c*d+100*e^(-.1882*H)*j*c)/(101*m*d*a*n-101*m*e^(-.1882*H)*j*a*n-101*l*k*a*n+100*m*b*n*g

-100*m*b*g-100*m*d*c*n+100*m*e^(-.1882*H)*j*c*n+100*l*k*c*n);

Sensitivity Analysis for Case 3 wrt a:

YA := simplify((Ya3-Y3)/Y3);

XA := simplify((Xa3-X3)/X3);

ZA := simplify((Za3-Z3)/Z3);

For b:

b1 := Y*(-a+1.01*b*X*(1-1/n)/(1+Y)+c);

b2 := X*(-d-g*Y/(1+X)+e^(-.1882*H)*j+k*Z/(1+X));

b3 := l*X-m*Z;

solve({X*(-d-g*Y/(1+X)+e^(-.1882*H)*j+k*Z/(1+X)) = 0, Y*(-a+1.01*b*X*(1-1/n)/(1+Y)+c) = 0, l*X-m*Z = 0}, [Y, X, Z]);

Case 1:

Yb1 := 0;

Xb1 := 0;

Zb1 := 0;

Case 2:

Yb2 := 0;

Xb2 := -m*(d-e^(-.1882*H)*j)/(-l*k+m*d-m*e^(-.1882*H)*j);

Zb2 := -l*(d-e^(-.1882*H)*j)/(-l*k+m*d-m*e^(-.1882*H)*j);

Case 3:

Yb3 := -(-100*m*e^(-.1882*H)*j*a*n+101*m*e^(-.1882*H)*j*c*n+101*m*b*n*d+101*e^(-.1882*H)*j*b*m-101*m*b*d-101*e^(-.1882*H)*j*b*n*m+100*m*d*a*n-100*m*d*c*n

-101*l*k*a*n+100*l*k*c*n)/(100*m*d*a*n-100*m*e^(-.1882*H)*j*a*n-100*l*k*a*n+101*m*b*n*g-101*m*b*g-100*m*d*c*n+100*m*e^(-.1882*H)*j*c*n+100*l*k*c*n);

Xb3 := -100*n*m*(-a*g+a*d-e^(-.1882*H)*j*a+c*g-c*d+e^(-.1882*H)*j*c)/(100*m*d*a*n-100*m*e^(-.1882*H)*j*a*n-100*l*k*a*n+101*m*b*n*g-101*m*b*g-100*m*d*c*n
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+100*m*e^(-.1882*H)*j*c*n+100*l*k*c*n);

Zb3 := -100*l*n*(-a*g+a*d-e^(-.1882*H)*j*a+c*g-c*d+e^(-.1882*H)*j*c)/(100*m*d*a*n-100*m*e^(-.1882*H)*j*a*n-100*l*k*a*n+101*m*b*n*g-101*m*b*g-100*m*d*c*n

+100*m*e^(-.1882*H)*j*c*n+100*l*k*c*n);

Sensitivity Analysis for Case 3 wrt b:

YB := simplify((Yb3-Y3)/Y3);

XB := simplify((Xb3-X3)/X3);

ZB := simplify((Zb3-Z3)/Z3);

For n:

n1 := Y*(-a+b*X*(1-1/(1.01*n))/(1+Y)+c);

n2 := X*(-d-g*Y/(1+X)+e^(-.1882*H)*j+k*Z/(1+X));

n3 := l*X-m*Z;

solve({X*(-d-g*Y/(1+X)+e^(-.1882*H)*j+k*Z/(1+X)) = 0, Y*(-a+b*X*(1-1/(1.01*n))/(1+Y)+c) = 0, l*X-m*Z = 0}, [Y, X, Z]);

Case 1:

Yn1 := 0;

Xn1 := 0;

Zn1 := 0;

Case 2:

Yn2 := 0;

Xn2 := -m*(d-e^(-.1882*H)*j)/(-l*k+m*d-m*e^(-.1882*H)*j);

Zn2 := -l*(d-e^(-.1882*H)*j)/(-l*k+m*d-m*e^(-.1882*H)*j);

Case 3:

Yn3 := -(-9.900990099*10^9*d*b*m-10^10*e^(-.1882*H)*j*b*n*m-10^10*a*n*e^(-.1882*H)*j*m+10^10*c*n*e^(-.1882*H)*j*m-10^10*a*n*k*l+10^10*c*n*k*l

+10^10*d*b*n*m+10^10*a*n*d*m-10^10*c*n*d*m+9.900990099*10^9*e^(-.1882*H)*j*b*m)/(10^10*a*n*d*m-10^10*a*n*e^(-.1882*H)*j*m-10^10*a*n*k*l

-10^10*c*n*d*m+10^10*c*n*e^(-.1882*H)*j*m+10^10*c*n*k*l+10^10*b*n*g*m-9.900990099*10^9*b*g*m);

Xn3 := -10^10*n*m*(-a*g+a*d-e^(-.1882*H)*j*a+c*g-c*d+e^(-.1882*H)*j*c)/(10^10*a*n*d*m-10^10*a*n*e^(-.1882*H)*j*m-10^10*a*n*k*l-10^10*c*n*d*m

+10^10*c*n*e^(-.1882*H)*j*m+10^10*c*n*k*l+10^10*b*n*g*m-9.900990099*10^9*b*g*m);

Zn3 := -10^10*l*n*(-a*g+a*d-e^(-.1882*H)*j*a+c*g-c*d+e^(-.1882*H)*j*c)/(10^10*a*n*d*m-10^10*a*n*e^(-.1882*H)*j*m

-10^10*a*n*k*l-10^10*c*n*d*m+10^10*c*n*e^(-.1882*H)*j*m+10^10*c*n*k*l+10^10*b*n*g*m-9.900990099*10^9*b*g*m);

Sensitivity Analysis for Case 3 wrt n:

YN := simplify((Yn3-Y3)/Y3);

XN := simplify((Xn3-X3)/X3);

ZN := simplify((Zn3-Z3)/Z3);

For c:

c1 := Y*(-a+b*X*(1-1/n)/(1+Y)+1.01*c);

c2 := X*(-d-g*Y/(1+X)+e^(-.1882*H)*j+k*Z/(1+X));

c3 := l*X-m*Z;

solve({X*(-d-g*Y/(1+X)+e^(-.1882*H)*j+k*Z/(1+X)) = 0, Y*(-a+b*X*(1-1/n)/(1+Y)+1.01*c) = 0, l*X-m*Z = 0}, [Y, X, Z]);

Case 1:

Yc1 := 0;

Xc1 := 0;

Zc1 := 0;

Case 2:

Yc2 := 0;

Xc2 := -m*(d-e^(-.1882*H)*j)/(-l*k+m*d-m*e^(-.1882*H)*j);

Zc2 := -l*(d-e^(-.1882*H)*j)/(-l*k+m*d-m*e^(-.1882*H)*j);

Case 3:

Yc3 := -(-100*m*e^(-.1882*H)*j*a*n+101*m*e^(-.1882*H)*j*c*n+100*m*b*n*d+100*e^(-.1882*H)*j*b*m-100*m*b*d-100*e^(-.1882*H)*j*b*n*m+100*m*d*a*n-101*m*d*c*n

-100*l*k*a*n+101*l*k*c*n)/(100*m*d*a*n-100*m*e^(-.1882*H)*j*a*n-100*l*k*a*n+100*m*b*n*g-100*m*b*g-101*m*d*c*n+101*m*e^(-.1882*H)*j*c*n+101*l*k*c*n);

Xc3 := -n*m*(-100*a*g+100*a*d-100*e^(-.1882*H)*j*a+101*c*g-101*c*d+101*e^(-.1882*H)*j*c)/(100*m*d*a*n-100*m*e^(-.1882*H)*j*a*n-100*l*k*a*n+100*m*b*n*g

-100*m*b*g-101*m*d*c*n+101*m*e^(-.1882*H)*j*c*n+101*l*k*c*n);

Zc3 := -l*n*(-100*a*g+100*a*d-100*e^(-.1882*H)*j*a+101*c*g-101*c*d+101*e^(-.1882*H)*j*c)/(100*m*d*a*n-100*m*e^(-.1882*H)*j*a*n-100*l*k*a*n+100*m*b*n*g

-100*m*b*g-101*m*d*c*n+101*m*e^(-.1882*H)*j*c*n+101*l*k*c*n);

Sensitivity Analysis for Case 3 wrt c:

YC := simplify((Yc3-Y3)/Y3);

XC := simplify((Xc3-X3)/X3);

ZC := simplify((Zc3-Z3)/Z3);

For d:

d1 := Y*(-a+b*X*(1-1/n)/(1+Y)+c);

d2 := X*(-1.01*d-g*Y/(1+X)+e^(-.1882*H)*j+k*Z/(1+X));

d3 := l*X-m*Z;

solve({X*(-1.01*d-g*Y/(1+X)+e^(-.1882*H)*j+k*Z/(1+X)) = 0, Y*(-a+b*X*(1-1/n)/(1+Y)+c) = 0, l*X-m*Z = 0}, [Y, X, Z]);

Case 1:

Yd1 := 0;

Xd1 := 0;

Zd1 := 0;

Case 2:

Yd2 := 0;

Xd2 := -m*(101*d-100*e^(-.1882*H)*j)/(101*m*d-100*m*e^(-.1882*H)*j-100*l*k);

Zd2 := -l*(101*d-100*e^(-.1882*H)*j)/(101*m*d-100*m*e^(-.1882*H)*j-100*l*k);

Case 3:

Yd3 := -(101*m*b*n*d+101*m*d*a*n-101*m*d*c*n+100*e^(-.1882*H)*j*b*m-100*l*k*a*n+100*l*k*c*n-101*m*b*d-100*e^(-.1882*H)*j*b*n*m-100*m*e^(-.1882*H)*j*a*n

+100*m*e^(-.1882*H)*j*c*n)/(101*m*d*a*n-100*m*e^(-.1882*H)*j*a*n-100*l*k*a*n+100*m*b*n*g-100*m*b*g-101*m*d*c*n+100*m*e^(-.1882*H)*j*c*n+100*l*k*c*n);

Xd3 := -n*m*(-100*a*g+101*a*d-100*e^(-.1882*H)*j*a+100*c*g-101*c*d+100*e^(-.1882*H)*j*c)/(101*m*d*a*n-100*m*e^(-.1882*H)*j*a*n-100*l*k*a*n+100*m*b*n*g

-100*m*b*g-101*m*d*c*n+100*m*e^(-.1882*H)*j*c*n+100*l*k*c*n);
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Zd3 := -l*n*(-100*a*g+101*a*d-100*e^(-.1882*H)*j*a+100*c*g-101*c*d+100*e^(-.1882*H)*j*c)/(101*m*d*a*n-100*m*e^(-.1882*H)*j*a*n-100*l*k*a*n+100*m*b*n*g

-100*m*b*g-101*m*d*c*n+100*m*e^(-.1882*H)*j*c*n+100*l*k*c*n);

Sensitivity Analysis for Case 3 wrt d:

YD := simplify((Yd3-Y3)/Y3);

XD := simplify((Xd3-X3)/X3);

ZD := simplify((Zd3-Z3)/Z3);

For g:

g1 := Y*(-a+b*X*(1-1/n)/(1+Y)+c);

g2 := X*(-d-1.01*g*Y/(1+X)+e^(-.1882*H)*j+k*Z/(1+X));

g3 := l*X-m*Z;

solve({X*(-d-1.01*g*Y/(1+X)+e^(-.1882*H)*j+k*Z/(1+X)) = 0, Y*(-a+b*X*(1-1/n)/(1+Y)+c) = 0, l*X-m*Z = 0}, [Y, X, Z]);

Case 1:

Yg1 := 0;

Xg1 := 0;

Zg1 := 0;

Case 2:

Yg2 := 0;

Xg2 := -m*(d-e^(-.1882*H)*j)/(-l*k+m*d-m*e^(-.1882*H)*j);

Zg2 := -l*(d-e^(-.1882*H)*j)/(-l*k+m*d-m*e^(-.1882*H)*j);

Case 3:

Yg3 := -(100*(m*b*n*d+m*d*a*n+m*d*c*n+e^(-.1882*H)*j*b*m-l*k*a*n+l*k*c*n-m*b*d-e^(-.1882*H)*j*b*n*m-m*e^(-.1882*H)*j*a*n+m*e^(-.1882*H)*j*c*n))/(100*m*d*a*n

-100*m*e^(-.1882*H)*j*a*n-100*l*k*a*n+101*m*b*n*g-101*m*b*g-100*m*d*c*n+100*m*e^(-.1882*H)*j*c*n+100*l*k*c*n);

Xg3 := -n*m*(-101*a*g+100*a*d-100*e^(-.1882*H)*j*a+101*c*g-100*c*d+100*e^(-.1882*H)*j*c)/(100*m*d*a*n-100*m*e^(-.1882*H)*j*a*n-100*l*k*a*n+101*m*b*n*g

-101*m*b*g-100*m*d*c*n+100*m*e^(-.1882*H)*j*c*n+100*l*k*c*n);

Zg3 := -l*n*(-101*a*g+100*a*d-100*e^(-.1882*H)*j*a+101*c*g-100*c*d+100*e^(-.1882*H)*j*c)/(100*m*d*a*n-100*m*e^(-.1882*H)*j*a*n-100*l*k*a*n+101*m*b*n*g

-101*m*b*g-100*m*d*c*n+100*m*e^(-.1882*H)*j*c*n+100*l*k*c*n);

Sensitivity Analysis for Case 3 wrt g:

YG := simplify((Yg3-Y3)/Y3);

XG := simplify((Xg3-X3)/X3);

ZG := simplify((Zg3-Z3)/Z3);

For H:

h1 := Y*(-a+b*X*(1-1/n)/(1+Y)+c);

h2 := X*(-d-g*Y/(1+X)+e^(-(.1882*1.01)*H)*j+k*Z/(1+X));

h3 := l*X-m*Z;

solve({X*(-d-g*Y/(1+X)+e^(-(.1882*1.01)*H)*j+k*Z/(1+X)) = 0, Y*(-a+b*X*(1-1/n)/(1+Y)+c) = 0, l*X-m*Z = 0}, [Y, X, Z]);

Case 1:

Yh1 := 0;

Xh1 := 0;

Zh1 := 0;

Case 2:

Yh2 := 0;

Xh2 := -m*(-d+e^(-.1900820001*H)*j)/(l*k-m*d+m*e^(-.1900820001*H)*j);

Zh2 := -l*(-d+e^(-.1900820001*H)*j)/(l*k-m*d-m*e^(-.1900820001*H)*j);

Case 3:

Yh3 := -(l*k*a*n+m*e^(-.1900820001*H)*j*a*n-l*k*c*n-m*e^(-.1900820001*H)*j*c*n+m*b*d+m*b*n*e^(-.1900820001*H)*j-m*b*e^(-.1900820001*H)*j-m*b*n*d+m*d*c*n

-m*d*a*n)/(m*b*g-m*d*a*n-m*b*n*g-m*d*c*n+l*k*a*n+m*e^(-.1900820001*H)*j*a*n-l*k*c*n-m*e^(-.1900820001*H)*j*c*n);

Xh3 := -m*n*(a*e^(-.1900820001*H)*j-c*e^(-.1900820001*H)*j+a*g-c*g-a*d+c*d)/(m*b*g-m*d*a*n-m*b*n*g+m*d*c*n+l*k*a*n+m*e^(-.1900820001*H)*j*a*n-l*k*c*n

-m*e^(-.1900820001*H)*j*c*n);

Zh3 := -l*n*(a*e^(-.1900820001*H)*j-c*e^(-.1900820001*H)*j+a*g-c*g+a*d+c*d)/(m*b*g-m*d*a*n-m*b*n*g+m*d*c*n+l*k*a*n+m*e^(-.1900820001*H)*j*a*n-l*k*c*n

-m*e^(-.1900820001*H)*j*c*n);

Sensitivity Analysis for Case 3 wrt H

YH := simplify((Yh3-Y3)/Y3);

XH := simplify((Xh3-X3)/X3);

ZH := simplify((Zh3-Z3)/Z3);

For j:

j1 := Y*(-a+b*X*(1-1/n)/(1+Y)+c);

j2 := X*(-d-g*Y/(1+X)+1.01*e^(-.1882*H)*j+k*Z/(1+X));

j3 := l*X-m*Z;

solve({X*(-d-g*Y/(1+X)+1.01*e^(-.1882*H)*j+k*Z/(1+X)) = 0, Y*(-a+b*X*(1-1/n)/(1+Y)+c) = 0, l*X-m*Z = 0}, [Y, X, Z]);

Case 1:

Yj1 := 0;

Xj1 := 0;

Zj1 := 0;

Case 2:

Yj2 := 0;

Xj2 := -m*(100*d-101*e^(-.1882*H)*j)/(100*m*d-101*m*e^(-.1882*H)*j-100*l*k);

Zj2 := -l*(100*d-101*e^(-.1882*H)*j)/(100*m*d-101*m*e^(-.1882*H)*j-100*l*k);

Case 3:

Yh3 := -(-100*l*k*a*n+100*l*k*c*n+100*m*b*n*d+100*m*d*a*n-100*m*d*c*n+101*e^(-.1882*H)*j*b*m-101*e^(-.1882*H)*j*b*n*m-101*m*e^(-.1882*H)*j*a*n+101*m

*e^(-.1882*H)*j*c*n-100*m*b*d)/(100*m*d*a*n-101*m*e^(-.1882*H)*j*a*n-100*l*k*a*n+100*m*b*n*g-100*m*b*g-101*m*d*c*n+101*m*e^(-.1882*H)*j*c*n+100*l*k*c*n);

Xj3 := -n*m*(-100*a*g+100*a*d-101*e^(-.1882*H)*j*a+100*c*g-100*c*d+101*e^(-.1882*H)*j*c)/(101*m*d*a*n-100*m*e^(-.1882*H)*j*a*n-100*l*k*a*n+100*m*b*n*g

-100*m*b*g-100*m*d*c*n+101*m*e^(-.1882*H)*j*c*n+100*l*k*c*n);

Zj3 := -l*n*(-100*a*g+100*a*d-101*e^(-.1882*H)*j*a+100*c*g-100*c*d+101*e^(-.1882*H)*j*c)/(100*m*d*a*n-101*m*e^(-.1882*H)*j*a*n-100*l*k*a*n+100*m*b*n*g

-100*m*b*g-100*m*d*c*n+101*m*e^(-.1882*H)*j*c*n+100*l*k*c*n);
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Sensitivity Analysis for Case 3 wrt j:

YJ := simplify((Yj3-Y3)/Y3);

XJ := simplify((Xj3-X3)/X3);

ZJ := simplify((Zj3-Z3)/Z3);

For k:

k1 := Y*(-a+b*X*(1-1/n)/(1+Y)+c);

k2 := X*(-d-g*Y/(1+X)+e^(-.1882*H)*j+1.01*k*Z/(1+X));

k3 := l*X-m*Z;

solve({X*(-d-g*Y/(1+X)+e^(-.1882*H)*j+1.01*k*Z/(1+X)) = 0, Y*(-a+b*X*(1-1/n)/(1+Y)+c) = 0, l*X-m*Z = 0}, [Y, X, Z]);

Case 1:

Yk1 := 0;

Xk1 := 0;

Zk1 := 0;

Case 2:

Yk2 := 0;

Xk2 := -100*m*(d-e^(-.1882*H)*j)/(100*m*d-100*m*e^(-.1882*H)*j-101*l*k);

Zk2 := -100*l*(d-e^(-.1882*H)*j)/(100*m*d-100*m*e^(-.1882*H)*j-101*l*k);

Case 3:

Yk3 := -(-101*l*k*a*n+101*l*k*c*n+100*m*b*n*d+100*m*d*a*n-100*m*d*c*n+100*e^(-.1882*H)*j*b*m-100*e^(-.1882*H)*j*b*n*m-100*m*e^(-.1882*H)*j*a*n+100*m

*e^(-.1882*H)*j*c*n-100*m*b*d)/(100*m*d*a*n-100*m*e^(-.1882*H)*j*a*n-101*l*k*a*n+100*m*b*n*g-100*m*b*g-100*m*d*c*n+100*m*e^(-.1882*H)*j*c*n+101*l*k*c*n);

Xk3 := -100*n*m*(-a*g+a*d-e^(-.1882*H)*j*a+c*g-c*d+e^(-.1882*H)*j*c)/(100*m*d*a*n-100*m*e^(-.1882*H)*j*a*n-101*l*k*a*n+100*m*b*n*g-100*m*b*g-100*m*d*c*n

+100*m*e^(-.1882*H)*j*c*n+101*l*k*c*n);

Zk3 := -100*l*n*(-a*g+a*d-e^(-.1882*H)*j*a+c*g-c*d+e^(-.1882*H)*j*c)/(100*m*d*a*n-100*m*e^(-.1882*H)*j*a*n-101*l*k*a*n+100*m*b*n*g-100*m*b*g-100*m*d*c*n

+100*m*e^(-.1882*H)*j*c*n+101*l*k*c*n);

Sensitivity Analysis for Case 3 wrt k:

YK := simplify((Yk3-Y3)/Y3);

XK := simplify((Xk3-X3)/X3);

ZK := simplify((Zk3-Z3)/Z3);

For l:

l1 := Y*(-a+b*X*(1-1/n)/(1+Y)+c);

l2 := X*(-d-g*Y/(1+X)+e^(-.1882*H)*j+k*Z/(1+X));

l3 := 1.01*l*X-m*Z;

solve({X*(-d-g*Y/(1+X)+e^(-.1882*H)*j+k*Z/(1+X)) = 0, Y*(-a+b*X*(1-1/n)/(1+Y)+c) = 0, 1.01*l*X-m*Z = 0}, [Y, X, Z]);

Case 1:

Yl1 := 0;

Xl1 := 0;

Zl1 := 0;

Case 2:

Yl2 := 0;

Xl2 := -100*m*(d-e^(-.1882*H)*j)/(100*m*d-100*m*e^(-.1882*H)*j-101*l*k);

Zl2 := -101*l*(d-e^(-.1882*H)*j)/(100*m*d-100*m*e^(-.1882*H)*j-101*l*k);

Case 3:

Yl3 := -(-101*l*k*a*n+101*l*k*c*n+100*m*b*n*d+100*m*d*a*n-100*m*d*c*n+100*e^(-.1882*H)*j*b*m-100*e^(-.1882*H)*j*b*n*m-100*m*e^(-.1882*H)*j*a*n+100*m

*e^(-.1882*H)*j*c*n-100*m*b*d)/(100*m*d*a*n-100*m*e^(-.1882*H)*j*a*n-101*l*k*a*n+100*m*b*n*g-100*m*b*g-100*m*d*c*n+100*m*e^(-.1882*H)*j*c*n+101*l*k*c*n);

Xl3 := -100*n*m*(-a*g+a*d-e^(-.1882*H)*j*a+c*g-c*d+e^(-.1882*H)*j*c)/(101*m*d*a*n-100*m*e^(-.1882*H)*j*a*n-100*l*k*a*n+100*m*b*n*g-100*m*b*g-100*m*d*c*n

+101*m*e^(-.1882*H)*j*c*n+101*l*k*c*n);

Zl3 := -101*l*n*(-a*g+a*d-e^(-.1882*H)*j*a+c*g-c*d+e^(-.1882*H)*j*c)/(100*m*d*a*n-100*m*e^(-.1882*H)*j*a*n-101*l*k*a*n+100*m*b*n*g-100*m*b*g-100*m*d*c*n

+100*m*e^(-.1882*H)*j*c*n+101*l*k*c*n);

Sensitivity Analysis for Case 3 wrt l:

YL := simplify((Yl3-Y3)/Y3);

XL := simplify((Xl3-X3)/X3);

ZL := simplify((Zl3-Z3)/Z3);

For m:

m1 := Y*(-a+b*X*(1-1/n)/(1+Y)+c);

m2 := X*(-d-g*Y/(1+X)+e^(-.1882*H)*j+k*Z/(1+X));

m3 := l*X-1.01*m*Z;

solve({X*(-d-g*Y/(1+X)+e^(-.1882*H)*j+k*Z/(1+X)) = 0, Y*(-a+b*X*(1-1/n)/(1+Y)+c) = 0, l*X-1.10*m*Z = 0}, [Y, X, Z]);

Case 1:

Ym1 := 0;

Xm1 := 0;

Zm1 := 0;

Case 2:

Ym2 := 0;

Xm2 := -11*m*(d-e^(-.1882*H)*j)/(11*m*d-11*m*e^(-.1882*H)*j-10*l*k);

Zm2 := -10*l*(d-e^(-.1882*H)*j)/(11*m*d-11*m*e^(-.1882*H)*j-10*l*k);

Case 3:

Ym3 := -(-10*l*k*a*n+10*l*k*c*n+11*m*b*n*d+11*m*d*a*n-11*m*d*c*n+11*e^(-.1882*H)*j*b*m-11*e^(-.1882*H)*j*b*n*m-11*m*e^(-.1882*H)*j*a*n+11*m*e^(-.1882*H)*j*c*n

-11*m*b*d)/(11*m*d*a*n-11*m*e^(-.1882*H)*j*a*n-10*l*k*a*n+11*m*b*n*g-11*m*b*g-11*m*d*c*n+11*m*e^(-.1882*H)*j*c*n+10*l*k*c*n);

Xm3 := -11*n*m*(-a*g+a*d-e^(-.1882*H)*j*a+c*g-c*d+e^(-.1882*H)*j*c)/(11*m*d*a*n-11*m*e^(-.1882*H)*j*a*n-10*l*k*a*n+11*m*b*n*g-11*m*b*g-11*m*d*c*n

+11*m*e^(-.1882*H)*j*c*n+10*l*k*c*n);

Zm3 := -10*l*n*(-a*g+a*d-e^(-.1882*H)*j*a+c*g-c*d+e^(-.1882*H)*j*c)/(11*m*d*a*n-11*m*e^(-.1882*H)*j*a*n-10*l*k*a*n+11*m*b*n*g-11*m*b*g-11*m*d*c*n

+11*m*e^(-.1882*H)*j*c*n+10*l*k*c*n);

Sensitivity Analysis for Case 3 wrt m:
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YM := simplify((Ym3-Y3)/Y3);

XM := simplify((Xm3-X3)/X3);

ZM := simplify((Zm3-Z3)/Z3);

with(stats);

with(stats[statplots]);

with(Statistics);

with(plots);

For Monoculture: Numerical Analysis

MZA := evalf(subs(a = .25, b = .24, n = 4, c = .12, d = .385, g = .3, H = 0, j = .5, k = 0.1e-3, l = 0.27e-2, m = 0.1e-3, ZA));

MZB := evalf(subs(a = .25, b = .24, n = 4, c = .12, d = .385, g = .3, H = 0, j = .5, k = 0.1e-3, l = 0.27e-2, m = 0.1e-3, ZB));

MZN := evalf(subs(a = .25, b = .24, n = 4, c = .12, d = .385, g = .3, H = 0, j = .5, k = 0.1e-3, l = 0.27e-2, m = 0.1e-3, ZN));

MZC := evalf(subs(a = .25, b = .24, n = 4, c = .12, d = .385, g = .3, H = 0, j = .5, k = 0.1e-3, l = 0.27e-2, m = 0.1e-3, ZC));

MZD := evalf(subs(a = .25, b = .24, n = 4, c = .12, d = .385, g = .3, H = 0, j = .5, k = 0.1e-3, l = 0.27e-2, m = 0.1e-3, ZD));

MZG := evalf(subs(a = .25, b = .24, n = 4, c = .12, d = .385, g = .3, H = 0, j = .5, k = 0.1e-3, l = 0.27e-2, m = 0.1e-3, ZG));

MZH := evalf(subs(a = .25, b = .24, n = 4, c = .12, d = .385, g = .3, H = 0, j = .5, k = 0.1e-3, l = 0.27e-2, m = 0.1e-3, ZH));

MZJ := evalf(subs(a = .25, b = .24, n = 4, c = .12, d = .385, g = .3, H = 0, j = .5, k = 0.1e-3, l = 0.27e-2, m = 0.1e-3, ZJ));

MZK := evalf(subs(a = .25, b = .24, n = 4, c = .12, d = .385, g = .3, H = 0, j = .5, k = 0.1e-3, l = 0.27e-2, m = 0.1e-3, ZK));

MZL := evalf(subs(a = .25, b = .24, n = 4, c = .12, d = .385, g = .3, H = 0, j = .5, k = 0.1e-3, l = 0.27e-2, m = 0.1e-3, ZL));

MZM := evalf(subs(a = .25, b = .24, n = 4, c = .12, d = .385, g = .3, H = 0, j = .5, k = 0.1e-3, l = 0.27e-2, m = 0.1e-3, ZM));

ColumnGraph([(1/10)*MZH, MZJ, MZA, MZL, MZK, MZN, MZG, MZC, MZB, MZD, MZM], title = "Monoculture - Numerical Analysis",

datasetlabels = ["H", "j", "a", "l", "k", "n", "g", "c", "b", "d", "m"], color = "Tomato");

For Polyculture: Numerical Analysis

PZA := evalf(subs(a = .25, b = .24, n = 4, c = .12, d = .3, g = .3, H = ln(2), j = .512, k = 0.1e-3, l = 0.3e-2, m = 0.1e-3, ZA));

PZB := evalf(subs(a = .25, b = .24, n = 4, c = .12, d = .3, g = .3, H = ln(2), j = .512, k = 0.1e-3, l = 0.3e-2, m = 0.1e-3, ZB));

PZN := evalf(subs(a = .25, b = .24, n = 4, c = .12, d = .3, g = .3, H = ln(2), j = .512, k = 0.1e-3, l = 0.3e-2, m = 0.1e-3, ZN));

PZC := evalf(subs(a = .25, b = .24, n = 4, c = .12, d = .3, g = .3, H = ln(2), j = .512, k = 0.1e-3, l = 0.3e-2, m = 0.1e-3, ZC));

PZD := evalf(subs(a = .25, b = .24, n = 4, c = .12, d = .3, g = .3, H = ln(2), j = .512, k = 0.1e-3, l = 0.3e-2, m = 0.1e-3, ZD));

PZG := evalf(subs(a = .25, b = .24, n = 4, c = .12, d = .3, g = .3, H = ln(2), j = .512, k = 0.1e-3, l = 0.3e-2, m = 0.1e-3, ZG));

PZH := evalf(subs(a = .25, b = .24, n = 4, c = .12, d = .3, g = .3, H = ln(2), j = .512, k = 0.1e-3, l = 0.3e-2, m = 0.1e-3, ZH));

PZJ := evalf(subs(a = .25, b = .24, n = 4, c = .12, d = .3, g = .3, H = ln(2), j = .512, k = 0.1e-3, l = 0.3e-2, m = 0.1e-3, ZJ));

PZK := evalf(subs(a = .25, b = .24, n = 4, c = .12, d = .3, g = .3, H = ln(2), j = .512, k = 0.1e-3, l = 0.3e-2, m = 0.1e-3, ZK));

PZL := evalf(subs(a = .25, b = .24, n = 4, c = .12, d = .3, g = .3, H = ln(2), j = .512, k = 0.1e-3, l = 0.3e-2, m = 0.1e-3, ZL));

PZM := evalf(subs(a = .25, b = .24, n = 4, c = .12, d = .3, g = .3, H = ln(2), j = .512, k = 0.1e-3, l = 0.3e-2, m = 0.1e-3, ZM));

ColumnGraph([(1/10)*PZH, PZJ, PZA, PZL, PZK, PZN, PZG, PZC, PZB, PZD, PZM], title = "Polyculture - Numerical Analysis",

datasetlabels = ["H", "j", "a", "l", "k", "n", "g", "c", "b", "d", "m"], color = "ForestGreen");

Array8 := Array([(1/10)*MZH, MZJ, MZA, MZL, MZK, MZN, MZG, MZC, MZB, MZD, MZM]);

Array9 := Array([(1/10)*PZH, PZJ, PZA, PZL, PZK, PZN, PZG, PZC, PZB, PZD, PZM]);

ColumnGraph([Array8, Array9], title = "Numerical Analysis", legend = ["Monoculture", "Polyculture"],

datasetlabels = ["H", "j", "a", "l", "k", "n", "g", "c", "b", "d", "m"], color = ["Tomato", "ForestGreen"]);

Analytical Analysis:

DA := diff(Z3, a);

DB := diff(Z3, b);

DN := diff(Z3, n);

DC := diff(Z3, c);

DD := diff(Z3, d);

DG := diff(Z3, g);

DH := diff(Z3, h);

DJ := diff(Z3, j);

DK := diff(Z3, k);

DL := diff(Z3, l);

DM := diff(Z3, m);

For Monoculture:

MDA := evalf(subs(a = .25, b = .24, n = 4, c = .12, d = .385, g = .3, H = 0, j = .5, k = 0.1e-3, l = 0.27e-2, m = 0.1e-3, DA*a/Z3));

MDB := evalf(subs(a = .25, b = .24, n = 4, c = .12, d = .385, g = .3, H = 0, j = .5, k = 0.1e-3, l = 0.27e-2, m = 0.1e-3, DB*b/Z3));

MDN := evalf(subs(a = .25, b = .24, n = 4, c = .12, d = .385, g = .3, H = 0, j = .5, k = 0.1e-3, l = 0.27e-2, m = 0.1e-3, DN*n/Z3));

MDC := evalf(subs(a = .25, b = .24, n = 4, c = .12, d = .385, g = .3, H = 0, j = .5, k = 0.1e-3, l = 0.27e-2, m = 0.1e-3, DC*c/Z3));

MDD := evalf(subs(a = .25, b = .24, n = 4, c = .12, d = .385, g = .3, H = 0, j = .5, k = 0.1e-3, l = 0.27e-2, m = 0.1e-3, DD*d/Z3));

MDG := evalf(subs(a = .25, b = .24, n = 4, c = .12, d = .385, g = .3, H = 0, j = .5, k = 0.1e-3, l = 0.27e-2, m = 0.1e-3, DG*g/Z3));

MDH := evalf(subs(a = .25, b = .24, n = 4, c = .12, d = .385, g = .3, H = 0, j = .5, k = 0.1e-3, l = 0.27e-2, m = 0.1e-3, DH*H/Z3));

MDJ := evalf(subs(a = .25, b = .24, n = 4, c = .12, d = .385, g = .3, H = 0, j = .5, k = 0.1e-3, l = 0.27e-2, m = 0.1e-3, DJ*j/Z3));

MDK := evalf(subs(a = .25, b = .24, n = 4, c = .12, d = .385, g = .3, H = 0, j = .5, k = 0.1e-3, l = 0.27e-2, m = 0.1e-3, DK*k/Z3));

MDL := evalf(subs(a = .25, b = .24, n = 4, c = .12, d = .385, g = .3, H = 0, j = .5, k = 0.1e-3, l = 0.27e-2, m = 0.1e-3, DL*l/Z3));

MDM := evalf(subs(a = .25, b = .24, n = 4, c = .12, d = .385, g = .3, H = 0, j = .5, k = 0.1e-3, l = 0.27e-2, m = 0.1e-3, DM*m/Z3));

ColumnGraph([MDA, MDJ, MDL, MDK, MDN, MDH, MDG, MDM, MDC, MDB, MDD], title = "Monoculture - Analytical Analysis",

datasetlabels = ["a", "j", "l", "k", "n", "H", "g", "m", "c", "b", "d"], color = "Tomato");

For Polyculture:

PDA := evalf(subs(a = .25, b = .24, n = 4, c = .12, d = .3, g = .3, H = ln(2), j = .512, k = 0.1e-3, l = 0.3e-2, m = 0.1e-3, DA*a/Z3));

PDB := evalf(subs(a = .25, b = .24, n = 4, c = .12, d = .3, g = .3, H = ln(2), j = .512, k = 0.1e-3, l = 0.3e-2, m = 0.1e-3, DB*b/Z3));

PDN := evalf(subs(a = .25, b = .24, n = 4, c = .12, d = .3, g = .3, H = ln(2), j = .512, k = 0.1e-3, l = 0.3e-2, m = 0.1e-3, DN*n/Z3));

PDC := evalf(subs(a = .25, b = .24, n = 4, c = .12, d = .3, g = .3, H = ln(2), j = .512, k = 0.1e-3, l = 0.3e-2, m = 0.1e-3, DC*c/Z3));

PDD := evalf(subs(a = .25, b = .24, n = 4, c = .12, d = .3, g = .3, H = ln(2), j = .512, k = 0.1e-3, l = 0.3e-2, m = 0.1e-3, DD*d/Z3));

PDG := evalf(subs(a = .25, b = .24, n = 4, c = .12, d = .3, g = .3, H = ln(2), j = .512, k = 0.1e-3, l = 0.3e-2, m = 0.1e-3, DG*g/Z3));

PDH := evalf(subs(a = .25, b = .24, n = 4, c = .12, d = .3, g = .3, H = ln(2), j = .512, k = 0.1e-3, l = 0.3e-2, m = 0.1e-3, DH*h/Z3));

PDJ := evalf(subs(a = .25, b = .24, n = 4, c = .12, d = .3, g = .3, H = ln(2), j = .512, k = 0.1e-3, l = 0.3e-2, m = 0.1e-3, DJ*j/Z3));

PDK := evalf(subs(a = .25, b = .24, n = 4, c = .12, d = .3, g = .3, H = ln(2), j = .512, k = 0.1e-3, l = 0.3e-2, m = 0.1e-3, DK*k/Z3));

PDL := evalf(subs(a = .25, b = .24, n = 4, c = .12, d = .3, g = .3, H = ln(2), j = .512, k = 0.1e-3, l = 0.3e-2, m = 0.1e-3, DL*l/Z3));

PDM := evalf(subs(a = .25, b = .24, n = 4, c = .12, d = .3, g = .3, H = ln(2), j = .512, k = 0.1e-3, l = 0.3e-2, m = 0.1e-3, DM*m/Z3));

ColumnGraph([PDA, PDJ, PDL, PDK, PDN, PDH, PDG, PDM, PDC, PDB, PDD], title = "Polyculture - Analytical Analysis",

datasetlabels = ["a", "j", "l", "k", "n", "H", "g", "m", "c", "b", "d"], color = "ForestGreen");

Array10 := [MDA, MDJ, MDL, MDK, MDN, MDH, MDG, MDM, MDC, MDB, MDD];

Array11 := [PDA, PDJ, PDL, PDK, PDN, PDH, PDG, PDM, PDC, PDB, PDD];

ColumnGraph([Array10, Array11], title = "Analytical Analysis", legend = ["Monoculture", "Polyculture"],

datasetlabels = ["a", "j", "l", "k", "n", "H", "g", "m", "c", "b", "d"], color = ["Tomato", "ForestGreen"]);
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A.3 Optimal Control Theory

f[1] := Y(t)*(-a+b*X(t)*(1-Y(t)/n)/(1+Y(t))+c);

f[2] := X(t)*(-d-g*Y(t)/(1+X(t))+(1+(.1546*(-1))*[(1-.5)*ln(1-.5)+.5*ln(.5)]*(1+U(t)))*j+k*Z(t)/(1+X(t)));

f[3] := l*X(t)-m*Z(t);

minimize[int(A*Z(t)+B*X(t)+C*U(t), t = 0 .. T)+Q(.5), U];

State Variables - damage and pest:

Z(t), X(t);

Control Function - effect of plant diversity on system:

U(t);

Terminal Time:

T;

State Equations - differential equations:

f[1], f[2], f[3];

Q(U(t)*q(T)) := -0.1e-1*(.8712*(1+U(t)))+73.982;

Hamiltonian:

HL := A*Z(t)+B*X(t)+C*U(t)+(73.982-73.54640)/T+l[1]*f[1]+l[2]*f[2]+l[3]*f[3];

Co-State Equations: (these are really derivatives)

CCS := A*Z+B*X+C*U+(73.982-73.5464)/T+l[1]*Y*(-a+b*X*(1-Y/n)/(1+Y)+c)+l[2]*X*(-d-g*Y/(1+X)+

(1+(.1546*(-1))*[(1-.5)*ln(1-.5)+.5*ln(.5)]*(1+U))*j+k*Z/(1+X))+l[3]*(X*l-Z*m);

dl[L] := -(diff(CCS, Y));

dl[2*L] := -(diff(CCS, X));

dl[3*L] := -(diff(CCS, Z));

Optimality Condition:

OCL := diff(CCS, U);

C + l[2] X (-0.1546(1 + U) + [0.1071605541]) j

XUL := solve(OCL = 0, U); optimality condition



Appendix B

MATLAB Code - Optimal Control
Theory

B.1 1% Plant Diversity

control: 1 + U(t) plus addition of loss of alfalfa productivity

using exponential Q_0 from mono and poly combined

q = 10%, U = 4, 0.5

test = -1;

parameters from Open Field Experiment - Polyculture

a=0.25;

b=0.24;

n=4;

c=0.12;

d=0.3;

g=0.3;

P=0.3250829734; for q = 10% where P = -[(1-q)ln(1-q)+qln(q)]

j=0.512;

k=0.0001;

l=0.003;

m=0.001;

T=25; terminal time

Delta = T/1000; how often to change

M = 1000;

t=linspace(0,T,M+1);

h=T/M;

h2 = h/2;

Y=zeros(1,M+1);

X=zeros(1,M+1);

Z=zeros(1,M+1);

initial values - can be altered

Y0=25; predator

X0=40; pest

Z0=0; damage

costs - can be altered

A=1; for predator

B=1; for pest

C=1; for damage

Y(1)=Y0;

X(1)=X0;

Z(1)=Z0;

lambda1=zeros(1,M+1);

lambda2=zeros(1,M+1);

lambda3=zeros(1,M+1);

u=zeros(1,M+1);

58
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while(test < 0)

oldu = u;

oldY = Y;

oldX = X;

oldZ = Z;

oldlambda1 = lambda1;

oldlambda2 = lambda2;

oldlambda3 = lambda3;

for i = 1:M state equations

m11 = Y(i)*(-a+((b*X(i))/(1+Y(i)))*(1-(Y(i)/n))+c);

m12 = X(i)*(-d-((g*Y(i))/(1+X(i)))+(1-0.1546*P*(1+u(i)))*j+((k*Z(i))/(1+X(i))));

m13 = l*X(i)-m*Z(i);

m21 = (Y(i)+h2*m11)*(-a+((b*(X(i)+h2*m12))/(1+(Y(i)+h2*m11)))*(1-((Y(i)+h2*m11)/n))+c);

m22 = (X(i)+h2*m12)*(-d-((g*(Y(i)+h2*m11))/(1+(X(i)+h2*m12)))+(1-0.1546*P*(1+u(i)))*j+((k*(Z(i)+h2*m13))/(1+(X(i)+h2*m12))));

m23 = l*(X(i)+h2*m12)-m*(Z(i)+h2*m13);

m31 = (Y(i)+h2*m21)*(-a+((b*(X(i)+h2*m22))/(1+(Y(i)+h2*m21)))*(1-((Y(i)+h2*m21)/n))+c);

m32 = (X(i)+h2*m22)*(-d-((g*(Y(i)+h2*m21))/(1+(X(i)+h2*m22)))+(1-0.1546*P*(1+u(i)))*j+((k*(Z(i)+h2*m23))/(1+(X(i)+h2*m22))));

m33 = l*(X(i)+h2*m22)-m*(Z(i)+h2*m23);

m41 = (Y(i)+h*m31)*(-a+((b*(X(i)+h*m32))/(1+(Y(i)+h*m31)))*(1-((Y(i)+h*m31)/n))+c);

m42 = (X(i)+h*m32)*(-d-((g*(Y(i)+h*m31))/(1+(X(i)+h*m32)))+(1-0.1546*P*(1+u(i)))*j+((k*(Z(i)+h*m33))/(1+(X(i)+h*m32))));

m43 = l*(X(i)+h*m32)-m*(Z(i)+h*m33);

X(i+1) = X(i) + (h/6)*(m11 + 2*m21 + 2*m31 + m41);

Y(i+1) = Y(i) + (h/6)*(m12 + 2*m22 + 2*m32 + m42);

Z(i+1) = Z(i) + (h/6)*(m13 + 2*m23 + 2*m33 + m43);

end

for i = 1:M costate equations

J = M+2-i;

m11 = -lambda1(J)*(-a+(b*X(J)*(1-(Y(J)/n)))/(1+Y(J))+c)-(lambda1(J)*Y(J))*((-b*X(J)*(1-(Y(J)/n)))/((1+Y(J))^2))-((b*X(J))/((1+Y(J))*n))

+((lambda2(J)*X(J)*g)/(1+X(J)));

m12 = -B-((lambda1(J)*Y(J)*b*(1-(Y(J)/n)))/(1+Y(J)))-lambda2(J)*(-d-((g*Y(J))/(1+X(J)))+(1-0.1546*(-0.6931471806)*(1+u(J))*j

+((k*Z(J))/(1+X(J)))))-lambda2(J)*X(J)*(((g*Y(J))/((1+X(J))^2))-((k*Z(J))/((1+X(J))^2)))-lambda3(J)*l;

m13 = -A-((lambda2(J)*X(J)*k)/(1+X(J)))+lambda3(J)*m;

m21 = -(lambda1(J)-h2*m11)*(-a+(b*((0.5)*(X(J)+X(J-1)))*(1-(((0.5)*(Y(J)-Y(J-1)))/n)))/(1+((0.5)*(Y(J)-Y(J-1))))+c)-((lambda1(J)-h2*m11)

*((0.5)*(Y(J)+Y(J-1))))*((-b*((0.5)*(X(J)+X(J-1)))*(1-(((0.5)*(Y(J)+Y(J-1)))/n)))/((1+((0.5)*(Y(J)+Y(J-1))))^2))

-((b*((0.5)*(X(J)+X(J-1))))/((1+((0.5)*(Y(J)+Y(J-1))))*n))+(((lambda2(J)-h2*m12)*((0.5)*(X(J)+X(J-1)))*g)/(1+((0.5)*(X(J)+X(J-1)))));

m22 = -B-(((lambda1(J)-h2*m11)*((0.5)*(Y(J)+Y(J-1)))*b*(1-(((0.5)*(Y(J)+Y(J-1)))/n)))/(1+((0.5)*(Y(J)+Y(J-1)))))-(lambda2(J)-h2*m12)

*(-d-((g*((0.5)*(Y(J)+Y(J-1))))/(1+((0.5)*(X(J)+X(J-1)))))+(1-0.1546*(-0.6931471806)*(1+u(J))*j+((k*((0.5)*(Z(J)+Z(J-1))))/(1+((0.5)

*(X(J)+X(J-1)))))))-(lambda2(J)-h2*m12)*((0.5)*(X(J)+X(J-1)))*(((g*((0.5)*(Y(J)+Y(J-1))))/((1+((0.5)*(X(J)+X(J-1))))^2))

-((k*((0.5)*(Z(J)+Z(J-1))))/((1+((0.5)*(X(J)+X(J-1))))^2)))-(lambda3(J)-h2*m13)*l;

m23 = -A-(((lambda2(J)-h2*m12)*((0.5)*(X(J)+X(J-1)))*k)/(1+((0.5)*(X(J)+X(J-1)))))+(lambda3(J)-h2*m13)*m;

m31 = -(lambda1(J)-h2*m21)*(-a+(b*((0.5)*(X(J)+X(J-1)))*(1-(((0.5)*(Y(J)-Y(J-1)))/n)))/(1+((0.5)*(Y(J)-Y(J-1))))+c)-((lambda1(J)-h2*m21)

*((0.5)*(Y(J)+Y(J-1))))*((-b*((0.5)*(X(J)+X(J-1)))*(1-(((0.5)*(Y(J)+Y(J-1)))/n)))/((1+((0.5)*(Y(J)+Y(J-1))))^2))

-((b*((0.5)*(X(J)+X(J-1))))/((1+((0.5)*(Y(J)+Y(J-1))))*n))+(((lambda2(J)-h2*m22)*((0.5)*(X(J)+X(J-1)))*g)/(1+((0.5)*(X(J)+X(J-1)))));

m32 = -B-(((lambda1(J)-h2*m21)*((0.5)*(Y(J)+Y(J-1)))*b*(1-(((0.5)*(Y(J)+Y(J-1)))/n)))/(1+((0.5)*(Y(J)+Y(J-1)))))-(lambda2(J)-h2*m22)

*(-d-((g*((0.5)*(Y(J)+Y(J-1))))/(1+((0.5)*(X(J)+X(J-1)))))+(1-0.1546*(-0.6931471806)*(1+u(J))*j+((k*((0.5)*(Z(J)+Z(J-1))))/(1+((0.5)

*(X(J)+X(J-1)))))))-(lambda2(J)-h2*m22)*((0.5)*(X(J)+X(J-1)))*(((g*((0.5)*(Y(J)+Y(J-1))))/((1+((0.5)*(X(J)+X(J-1))))^2))-((k*((0.5)

*(Z(J)+Z(J-1))))/((1+((0.5)*(X(J)+X(J-1))))^2)))-(lambda3(J)-h2*m23)*l;

m33 = -A-(((lambda2(J)-h2*m22)*((0.5)*(X(J)+X(J-1)))*k)/(1+((0.5)*(X(J)+X(J-1)))))+(lambda3(J)-h2*m23)*m;

m41 = -(lambda1(J)-h2*m31)*(-a+(b*X(J)*(1-(Y(J)/n)))/(1+Y(J))+c)-((lambda1(J)-h2*m31)*Y(J))*((-b*X(J)*(1-(Y(J)/n)))/((1+Y(J))^2))-((b*X(J))

/((1+Y(J))*n))+(((lambda2(J)-h2*m32)*X(J)*g)/(1+X(J)));

m42 = -B-(((lambda1(J)-h2*m31)*Y(J)*b*(1-(Y(J)/n)))/(1+Y(J)))-(lambda2(J)-h2*m32)*(-d-((g*Y(J))/(1+X(J)))+(1-0.1546*(-0.6931471806)*(1+u(J))*j

+((k*Z(J))/(1+X(J)))))-(lambda2(J)-h2*m32)*X(J)*(((g*Y(J))/((1+X(J))^2))-((k*Z(J))/((1+X(J))^2)))-(lambda3(J)-h2*m33)*l;

m43 = -A-(((lambda2(J)-h2*m32)*X(J)*k)/(1+X(J)))+(lambda3(J)-h2*m33)*m;

lambda1(J-1) = lambda1(J) - (h/6)*(m11 + 2*m21 + 2*m31 + m41);

lambda2(J-1) = lambda2(J) - (h/6)*(m12 + 2*m22 + 2*m32 + m42);

lambda3(J-1) = lambda3(J) - (h/6)*(m13 + 2*m23 + 2*m33 + m43);

end

temp = 4; optimality condition

u1 = min(49, max(0, abs(temp)));

u = 0.5*(u1 + oldu);

temp1 = Delta*sum(abs(u)) - sum(abs(oldu - u));

temp2 = Delta*sum(abs(Y)) - sum(abs(oldY - Y));

temp3 = Delta*sum(abs(X)) - sum(abs(oldX - X));

temp4 = Delta*sum(abs(Z)) - sum(abs(oldZ - Z));

temp5 = Delta*sum(abs(lambda1)) - sum(abs(oldlambda1 - lambda1));

temp6 = Delta*sum(abs(lambda2)) - sum(abs(oldlambda2 - lambda2));

temp7 = Delta*sum(abs(lambda3)) - sum(abs(oldlambda3 - lambda3));

test = min(temp1, min(temp2, min(temp3, min(temp4, min(temp5, min(temp6, temp7))))));

end

y(1,:) = t;

y(2,:) = Y;

y(3,:) = X;

y(4,:) = Z;

y(5,:) = lambda1;

y(6,:) = lambda2;

y(7,:) = lambda3;
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y(8,:) = 1+u;

subplot(1,3,1);plot(y(1,:),y(4,:),’r’)

subplot(1,3,1);xlabel(’Time’)

subplot(1,3,1);ylabel(’damage (Z)’)

subplot(1,3,1);axis([0 T -0.1 1.1])

subplot(1,3,2);plot(y(1,:),y(3,:),’g’)

subplot(1,3,2);xlabel(’Time’)

subplot(1,3,2);ylabel(’pest (X)’)

subplot(1,3,2);axis([0 T -11 41])

subplot(1,3,3);plot( y(1,:),y(2,:),’b’)

subplot(1,3,3);xlabel(’Time’)

subplot(1,3,3);ylabel(’predators (Y)’)

subplot(1,3,3);axis([0 T -11 41])

B.2 10% Plant Diversity

%control: 1 + U(t) plus addition of loss of alfalfa productivity

%using exponential Q_0 from mono and poly combined

%q = 1%, U = 49, 0.5

%function y = OCT_Summer_2014(A,B,C,Y0,X0,Z0)

test = -1;

%parameters from Open Field Experiment - Polyculture

a=0.25;

b=0.24;

n=4;

c=0.12;

d=0.3;

g=0.3;

P=0.05600153435; %for q = 1% where P = -[(1-q)ln(1-q)+qln(q)]

j=0.512;

k=0.0001;

l=0.003;

m=0.001;

T=25; %terminal time

Delta = T/1000; %how often to change

M = 1000;

t=linspace(0,T,M+1);

h=T/M;

h2 = h/2;

Y=zeros(1,M+1);

X=zeros(1,M+1);

Z=zeros(1,M+1);

%initial values - can be altered

Y0=25; %predator

X0=40; %pest

Z0=0; %damage

%costs - can be altered

A=1; %for predator

B=1; %for pest

C=1; %for damage

%change the starting point of predator, pest, damage, and costs to

%determine different situations

Y(1)=Y0;

X(1)=X0;

Z(1)=Z0;

lambda1=zeros(1,M+1);

lambda2=zeros(1,M+1);

lambda3=zeros(1,M+1);

u=zeros(1,M+1);

while(test < 0)

oldu = u;

oldY = Y;

oldX = X;

oldZ = Z;

oldlambda1 = lambda1;

oldlambda2 = lambda2;

oldlambda3 = lambda3;

for i = 1:M %state equations
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m11 = Y(i)*(-a+((b*X(i))/(1+Y(i)))*(1-(Y(i)/n))+c);

m12 = X(i)*(-d-((g*Y(i))/(1+X(i)))+(1-0.1546*P*(1+u(i)))*j+((k*Z(i))/(1+X(i))));

m13 = l*X(i)-m*Z(i);

m21 = (Y(i)+h2*m11)*(-a+((b*(X(i)+h2*m12))/(1+(Y(i)+h2*m11)))*(1-((Y(i)+h2*m11)/n))+c);

m22 = (X(i)+h2*m12)*(-d-((g*(Y(i)+h2*m11))/(1+(X(i)+h2*m12)))+(1-0.1546*P*(1+u(i)))*j+((k*(Z(i)+h2*m13))/(1+(X(i)+h2*m12))));

m23 = l*(X(i)+h2*m12)-m*(Z(i)+h2*m13);

m31 = (Y(i)+h2*m21)*(-a+((b*(X(i)+h2*m22))/(1+(Y(i)+h2*m21)))*(1-((Y(i)+h2*m21)/n))+c);

m32 = (X(i)+h2*m22)*(-d-((g*(Y(i)+h2*m21))/(1+(X(i)+h2*m22)))+(1-0.1546*P*(1+u(i)))*j+((k*(Z(i)+h2*m23))/(1+(X(i)+h2*m22))));

m33 = l*(X(i)+h2*m22)-m*(Z(i)+h2*m23);

m41 = (Y(i)+h*m31)*(-a+((b*(X(i)+h*m32))/(1+(Y(i)+h*m31)))*(1-((Y(i)+h*m31)/n))+c);

m42 = (X(i)+h*m32)*(-d-((g*(Y(i)+h*m31))/(1+(X(i)+h*m32)))+(1-0.1546*P*(1+u(i)))*j+((k*(Z(i)+h*m33))/(1+(X(i)+h*m32))));

m43 = l*(X(i)+h*m32)-m*(Z(i)+h*m33);

X(i+1) = X(i) + (h/6)*(m11 + 2*m21 + 2*m31 + m41);

Y(i+1) = Y(i) + (h/6)*(m12 + 2*m22 + 2*m32 + m42);

Z(i+1) = Z(i) + (h/6)*(m13 + 2*m23 + 2*m33 + m43);

end

for i = 1:M %costate equations

J = M+2-i;

m11 = -lambda1(J)*(-a+(b*X(J)*(1-(Y(J)/n)))/(1+Y(J))+c)-(lambda1(J)*Y(J))*((-b*X(J)*(1-(Y(J)/n)))/((1+Y(J))^2))-((b*X(J))/((1+Y(J))*n))

+((lambda2(J)*X(J)*g)/(1+X(J)));

m12 = -B-((lambda1(J)*Y(J)*b*(1-(Y(J)/n)))/(1+Y(J)))-lambda2(J)*(-d-((g*Y(J))/(1+X(J)))+(1-0.1546*(-0.6931471806)*(1+u(J))*j+((k*Z(J))/(1+X(J)))))

-lambda2(J)*X(J)*(((g*Y(J))/((1+X(J))^2))-((k*Z(J))/((1+X(J))^2)))-lambda3(J)*l;

m13 = -A-((lambda2(J)*X(J)*k)/(1+X(J)))+lambda3(J)*m;

m21 = -(lambda1(J)-h2*m11)*(-a+(b*((0.5)*(X(J)+X(J-1)))*(1-(((0.5)*(Y(J)-Y(J-1)))/n)))/(1+((0.5)*(Y(J)-Y(J-1))))+c)-((lambda1(J)-h2*m11)

*((0.5)*(Y(J)+Y(J-1))))*((-b*((0.5)*(X(J)+X(J-1)))*(1-(((0.5)*(Y(J)+Y(J-1)))/n)))/((1+((0.5)*(Y(J)+Y(J-1))))^2))-((b*((0.5)*(X(J)+X(J-1))))

/((1+((0.5)*(Y(J)+Y(J-1))))*n))+(((lambda2(J)-h2*m12)*((0.5)*(X(J)+X(J-1)))*g)/(1+((0.5)*(X(J)+X(J-1)))));

m22 = -B-(((lambda1(J)-h2*m11)*((0.5)*(Y(J)+Y(J-1)))*b*(1-(((0.5)*(Y(J)+Y(J-1)))/n)))/(1+((0.5)*(Y(J)+Y(J-1)))))-(lambda2(J)-h2*m12)

*(-d-((g*((0.5)*(Y(J)+Y(J-1))))/(1+((0.5)*(X(J)+X(J-1)))))+(1-0.1546*(-0.6931471806)*(1+u(J))*j+((k*((0.5)*(Z(J)+Z(J-1))))/(1+((0.5)

*(X(J)+X(J-1)))))))-(lambda2(J)-h2*m12)*((0.5)*(X(J)+X(J-1)))*(((g*((0.5)*(Y(J)+Y(J-1))))/((1+((0.5)*(X(J)+X(J-1))))^2))-((k*((0.5)

*(Z(J)+Z(J-1))))/((1+((0.5)*(X(J)+X(J-1))))^2)))-(lambda3(J)-h2*m13)*l;

m23 = -A-(((lambda2(J)-h2*m12)*((0.5)*(X(J)+X(J-1)))*k)/(1+((0.5)*(X(J)+X(J-1)))))+(lambda3(J)-h2*m13)*m;

m31 = -(lambda1(J)-h2*m21)*(-a+(b*((0.5)*(X(J)+X(J-1)))*(1-(((0.5)*(Y(J)-Y(J-1)))/n)))/(1+((0.5)*(Y(J)-Y(J-1))))+c)-((lambda1(J)-h2*m21)

*((0.5)*(Y(J)+Y(J-1))))*((-b*((0.5)*(X(J)+X(J-1)))*(1-(((0.5)*(Y(J)+Y(J-1)))/n)))/((1+((0.5)*(Y(J)+Y(J-1))))^2))-((b*((0.5)*(X(J)+X(J-1))))

/((1+((0.5)*(Y(J)+Y(J-1))))*n))+(((lambda2(J)-h2*m22)*((0.5)*(X(J)+X(J-1)))*g)/(1+((0.5)*(X(J)+X(J-1)))));

m32 = -B-(((lambda1(J)-h2*m21)*((0.5)*(Y(J)+Y(J-1)))*b*(1-(((0.5)*(Y(J)+Y(J-1)))/n)))/(1+((0.5)*(Y(J)+Y(J-1)))))-(lambda2(J)-h2*m22)

*(-d-((g*((0.5)*(Y(J)+Y(J-1))))/(1+((0.5)*(X(J)+X(J-1)))))+(1-0.1546*(-0.6931471806)*(1+u(J))*j+((k*((0.5)*(Z(J)+Z(J-1))))/(1+((0.5)

*(X(J)+X(J-1)))))))-(lambda2(J)-h2*m22)*((0.5)*(X(J)+X(J-1)))*(((g*((0.5)*(Y(J)+Y(J-1))))/((1+((0.5)*(X(J)+X(J-1))))^2))-((k*((0.5)

*(Z(J)+Z(J-1))))/((1+((0.5)*(X(J)+X(J-1))))^2)))-(lambda3(J)-h2*m23)*l;

m33 = -A-(((lambda2(J)-h2*m22)*((0.5)*(X(J)+X(J-1)))*k)/(1+((0.5)*(X(J)+X(J-1)))))+(lambda3(J)-h2*m23)*m;

m41 = -(lambda1(J)-h2*m31)*(-a+(b*X(J)*(1-(Y(J)/n)))/(1+Y(J))+c)-((lambda1(J)-h2*m31)*Y(J))*((-b*X(J)*(1-(Y(J)/n)))/((1+Y(J))^2))

-((b*X(J))/((1+Y(J))*n))+(((lambda2(J)-h2*m32)*X(J)*g)/(1+X(J)));

m42 = -B-(((lambda1(J)-h2*m31)*Y(J)*b*(1-(Y(J)/n)))/(1+Y(J)))-(lambda2(J)-h2*m32)*(-d-((g*Y(J))/(1+X(J)))+(1-0.1546*(-0.6931471806)

*(1+u(J))*j+((k*Z(J))/(1+X(J)))))-(lambda2(J)-h2*m32)*X(J)*(((g*Y(J))/((1+X(J))^2))-((k*Z(J))/((1+X(J))^2)))-(lambda3(J)-h2*m33)*l;

m43 = -A-(((lambda2(J)-h2*m32)*X(J)*k)/(1+X(J)))+(lambda3(J)-h2*m33)*m;

lambda1(J-1) = lambda1(J) - (h/6)*(m11 + 2*m21 + 2*m31 + m41);

lambda2(J-1) = lambda2(J) - (h/6)*(m12 + 2*m22 + 2*m32 + m42);

lambda3(J-1) = lambda3(J) - (h/6)*(m13 + 2*m23 + 2*m33 + m43);

end

temp = 49;

u1 = min(49, max(0, abs(temp)));

u = 0.5*(u1 + oldu);

temp1 = Delta*sum(abs(u)) - sum(abs(oldu - u));

temp2 = Delta*sum(abs(Y)) - sum(abs(oldY - Y));

temp3 = Delta*sum(abs(X)) - sum(abs(oldX - X));

temp4 = Delta*sum(abs(Z)) - sum(abs(oldZ - Z));

temp5 = Delta*sum(abs(lambda1)) - sum(abs(oldlambda1 - lambda1));

temp6 = Delta*sum(abs(lambda2)) - sum(abs(oldlambda2 - lambda2));

temp7 = Delta*sum(abs(lambda3)) - sum(abs(oldlambda3 - lambda3));

test = min(temp1, min(temp2, min(temp3, min(temp4, min(temp5, min(temp6, temp7))))));

end

y(1,:) = t;

y(2,:) = Y;

y(3,:) = X;

y(4,:) = Z;

y(5,:) = lambda1;

y(6,:) = lambda2;

y(7,:) = lambda3;

y(8,:) = 1+u;

subplot(1,3,1);plot(y(1,:),y(4,:),’r’)

subplot(1,3,1);xlabel(’Time’)

subplot(1,3,1);ylabel(’damage (Z)’)

subplot(1,3,1);axis([0 T -0.1 1.1])

subplot(1,3,2);plot(y(1,:),y(3,:),’g’)

subplot(1,3,2);xlabel(’Time’)

subplot(1,3,2);ylabel(’pest (X)’)

subplot(1,3,2);axis([0 T -11 41])
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subplot(1,3,3);plot( y(1,:),y(2,:),’b’)

subplot(1,3,3);xlabel(’Time’)

subplot(1,3,3);ylabel(’predators (Y)’)

subplot(1,3,3);axis([0 T -11 41])

B.3 20% Plant Diversity

%control: 1 + U(t) plus addition of loss of alfalfa productivity

%using exponential Q_0 from mono and poly combined

%q = 20%, U = 1.5, 0.5

%function y = OCT_Summer_2014(A,B,C,Y0,X0,Z0)

test = -1;

%parameters from Open Field Experiment - Polyculture

a=0.25;

b=0.24;

n=4;

c=0.12;

d=0.3;

g=0.3;

j=0.512;

k=0.0001;

l=0.003;

m=0.001;

T=25; %terminal time

Delta = T/1000; %how often to change

M = 1000;

t=linspace(0,T,M+1);

h=T/M;

h2 = h/2;

Y=zeros(1,M+1);

X=zeros(1,M+1);

Z=zeros(1,M+1);

P=0.67478408; %for q = 20% where P = -[(1-q)ln(1-q)+qln(q)]

%initial values - can be altered

Y0=2.5069; %predator

X0=1.4412; %pest

Z0=0.0724; %damage

%costs - can be altered

A=1; %for predator

B=1; %for pest

C=1; %for damage

%change the starting point of predator, pest, damage, and costs to

%determine different situations

Y(1)=Y0;

X(1)=X0;

Z(1)=Z0;

lambda1=zeros(1,M+1);

lambda2=zeros(1,M+1);

lambda3=zeros(1,M+1);

u=zeros(1,M+1);

while(test < 0)

oldu = u;

oldY = Y;

oldX = X;

oldZ = Z;

oldlambda1 = lambda1;

oldlambda2 = lambda2;

oldlambda3 = lambda3;

for i = 1:M %state equations

m11 = Y(i)*(-a+((b*X(i))/(1+Y(i)))*(1-(Y(i)/n))+c);

m12 = X(i)*(-d-((g*Y(i))/(1+X(i)))+(1-0.1546*P*(1+u(i)))*j+((k*Z(i))/(1+X(i))));

m13 = l*X(i)-m*Z(i);

m21 = (Y(i)+h2*m11)*(-a+((b*(X(i)+h2*m12))/(1+(Y(i)+h2*m11)))*(1-((Y(i)+h2*m11)/n))+c);

m22 = (X(i)+h2*m12)*(-d-((g*(Y(i)+h2*m11))/(1+(X(i)+h2*m12)))+(1-0.1546*P*(1+u(i)))+((k*(Z(i)+h2*m13))/(1+(X(i)+h2*m12))));

m23 = l*(X(i)+h2*m12)-m*(Z(i)+h2*m13);

m31 = (Y(i)+h2*m21)*(-a+((b*(X(i)+h2*m22))/(1+(Y(i)+h2*m21)))*(1-((Y(i)+h2*m21)/n))+c);

m32 = (X(i)+h2*m22)*(-d-((g*(Y(i)+h2*m21))/(1+(X(i)+h2*m22)))+(1-0.1546*P*(1+u(i)))*j+((k*(Z(i)+h2*m23))/(1+(X(i)+h2*m22))));
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m33 = l*(X(i)+h2*m22)-m*(Z(i)+h2*m23);

m41 = (Y(i)+h*m31)*(-a+((b*(X(i)+h*m32))/(1+(Y(i)+h*m31)))*(1-((Y(i)+h*m31)/n))+c);

m42 = (X(i)+h*m32)*(-d-((g*(Y(i)+h*m31))/(1+(X(i)+h*m32)))+(1-0.1546*P*(1+u(i)))*j+((k*(Z(i)+h*m33))/(1+(X(i)+h*m32))));

m43 = l*(X(i)+h*m32)-m*(Z(i)+h*m33);

X(i+1) = X(i) + (h/6)*(m11 + 2*m21 + 2*m31 + m41);

Y(i+1) = Y(i) + (h/6)*(m12 + 2*m22 + 2*m32 + m42);

Z(i+1) = Z(i) + (h/6)*(m13 + 2*m23 + 2*m33 + m43);

end

for i = 1:M %costate equations

J = M+2-i;

m11 = -lambda1(J)*(-a+(b*X(J)*(1-(Y(J)/n)))/(1+Y(J))+c)-(lambda1(J)*Y(J))*((-b*X(J)*(1-(Y(J)/n)))/((1+Y(J))^2))-((b*X(J))/((1+Y(J))*n))

+((lambda2(J)*X(J)*g)/(1+X(J)));

m12 = -B-((lambda1(J)*Y(J)*b*(1-(Y(J)/n)))/(1+Y(J)))-lambda2(J)*(-d-((g*Y(J))/(1+X(J)))+(1-0.1546*(-0.6931471806)*(1+u(J))*j+((k*Z(J))/(1+X(J)))))

-lambda2(J)*X(J)*(((g*Y(J))/((1+X(J))^2))-((k*Z(J))/((1+X(J))^2)))-lambda3(J)*l;

m13 = -A-((lambda2(J)*X(J)*k)/(1+X(J)))+lambda3(J)*m;

m21 = -(lambda1(J)-h2*m11)*(-a+(b*((0.5)*(X(J)+X(J-1)))*(1-(((0.5)*(Y(J)-Y(J-1)))/n)))/(1+((0.5)*(Y(J)-Y(J-1))))+c)-((lambda1(J)-h2*m11)

*((0.5)*(Y(J)+Y(J-1))))*((-b*((0.5)*(X(J)+X(J-1)))*(1-(((0.5)*(Y(J)+Y(J-1)))/n)))/((1+((0.5)*(Y(J)+Y(J-1))))^2))-((b*((0.5)*(X(J)+X(J-1))))

/((1+((0.5)*(Y(J)+Y(J-1))))*n))+(((lambda2(J)-h2*m12)*((0.5)*(X(J)+X(J-1)))*g)/(1+((0.5)*(X(J)+X(J-1)))));

m22 = -B-(((lambda1(J)-h2*m11)*((0.5)*(Y(J)+Y(J-1)))*b*(1-(((0.5)*(Y(J)+Y(J-1)))/n)))/(1+((0.5)*(Y(J)+Y(J-1)))))-(lambda2(J)-h2*m12)

*(-d-((g*((0.5)*(Y(J)+Y(J-1))))/(1+((0.5)*(X(J)+X(J-1)))))+(1-0.1546*(-0.6931471806)*(1+u(J))*j+((k*((0.5)*(Z(J)+Z(J-1))))/(1+((0.5)

*(X(J)+X(J-1)))))))-(lambda2(J)-h2*m12)*((0.5)*(X(J)+X(J-1)))*(((g*((0.5)*(Y(J)+Y(J-1))))/((1+((0.5)*(X(J)+X(J-1))))^2))-((k*((0.5)

*(Z(J)+Z(J-1))))/((1+((0.5)*(X(J)+X(J-1))))^2)))-(lambda3(J)-h2*m13)*l;

m23 = -A-(((lambda2(J)-h2*m12)*((0.5)*(X(J)+X(J-1)))*k)/(1+((0.5)*(X(J)+X(J-1)))))+(lambda3(J)-h2*m13)*m;

m31 = -(lambda1(J)-h2*m21)*(-a+(b*((0.5)*(X(J)+X(J-1)))*(1-(((0.5)*(Y(J)-Y(J-1)))/n)))/(1+((0.5)*(Y(J)-Y(J-1))))+c)-((lambda1(J)-h2*m21)

*((0.5)*(Y(J)+Y(J-1))))*((-b*((0.5)*(X(J)+X(J-1)))*(1-(((0.5)*(Y(J)+Y(J-1)))/n)))/((1+((0.5)*(Y(J)+Y(J-1))))^2))-((b*((0.5)*(X(J)+X(J-1))))

/((1+((0.5)*(Y(J)+Y(J-1))))*n))+(((lambda2(J)-h2*m22)*((0.5)*(X(J)+X(J-1)))*g)/(1+((0.5)*(X(J)+X(J-1)))));

m32 = -B-(((lambda1(J)-h2*m21)*((0.5)*(Y(J)+Y(J-1)))*b*(1-(((0.5)*(Y(J)+Y(J-1)))/n)))/(1+((0.5)*(Y(J)+Y(J-1)))))-(lambda2(J)-h2*m22)

*(-d-((g*((0.5)*(Y(J)+Y(J-1))))/(1+((0.5)*(X(J)+X(J-1)))))+(1-0.1546*(-0.6931471806)*(1+u(J))*j+((k*((0.5)*(Z(J)+Z(J-1))))/(1+((0.5)

*(X(J)+X(J-1)))))))-(lambda2(J)-h2*m22)*((0.5)*(X(J)+X(J-1)))*(((g*((0.5)*(Y(J)+Y(J-1))))/((1+((0.5)*(X(J)+X(J-1))))^2))-((k*((0.5)*(Z(J)+Z(J-1))))

/((1+((0.5)*(X(J)+X(J-1))))^2)))-(lambda3(J)-h2*m23)*l;

m33 = -A-(((lambda2(J)-h2*m22)*((0.5)*(X(J)+X(J-1)))*k)/(1+((0.5)*(X(J)+X(J-1)))))+(lambda3(J)-h2*m23)*m;

m41 = -(lambda1(J)-h2*m31)*(-a+(b*X(J)*(1-(Y(J)/n)))/(1+Y(J))+c)-((lambda1(J)-h2*m31)*Y(J))*((-b*X(J)*(1-(Y(J)/n)))/((1+Y(J))^2))-((b*X(J))

/((1+Y(J))*n))+(((lambda2(J)-h2*m32)*X(J)*g)/(1+X(J)));

m42 = -B-(((lambda1(J)-h2*m31)*Y(J)*b*(1-(Y(J)/n)))/(1+Y(J)))-(lambda2(J)-h2*m32)*(-d-((g*Y(J))/(1+X(J)))+(1-0.1546*(-0.6931471806)*(1+u(J))*j

+((k*Z(J))/(1+X(J)))))-(lambda2(J)-h2*m32)*X(J)*(((g*Y(J))/((1+X(J))^2))-((k*Z(J))/((1+X(J))^2)))-(lambda3(J)-h2*m33)*l;

m43 = -A-(((lambda2(J)-h2*m32)*X(J)*k)/(1+X(J)))+(lambda3(J)-h2*m33)*m;

lambda1(J-1) = lambda1(J) - (h/6)*(m11 + 2*m21 + 2*m31 + m41);

lambda2(J-1) = lambda2(J) - (h/6)*(m12 + 2*m22 + 2*m32 + m42);

lambda3(J-1) = lambda3(J) - (h/6)*(m13 + 2*m23 + 2*m33 + m43);

end

temp = 1.5; %optimality condition

u1 = min(49, max(0, abs(temp)));

u = 0.5*(u1 + oldu);

temp1 = Delta*sum(abs(u)) - sum(abs(oldu - u));

temp2 = Delta*sum(abs(Y)) - sum(abs(oldY - Y));

temp3 = Delta*sum(abs(X)) - sum(abs(oldX - X));

temp4 = Delta*sum(abs(Z)) - sum(abs(oldZ - Z));

temp5 = Delta*sum(abs(lambda1)) - sum(abs(oldlambda1 - lambda1));

temp6 = Delta*sum(abs(lambda2)) - sum(abs(oldlambda2 - lambda2));

temp7 = Delta*sum(abs(lambda3)) - sum(abs(oldlambda3 - lambda3));

test = min(temp1, min(temp2, min(temp3, min(temp4, min(temp5, min(temp6, temp7))))));

end

y(1,:) = t;

y(2,:) = Y;

y(3,:) = X;

y(4,:) = Z;

y(5,:) = lambda1;

y(6,:) = lambda2;

y(7,:) = lambda3;

y(8,:) = 1+u;

subplot(1,3,1);plot(y(1,:),y(4,:),’r’)

subplot(1,3,1);xlabel(’Time’)

subplot(1,3,1);ylabel(’damage (Z)’)

subplot(1,3,1);axis([0 T -0.1 4.1])

subplot(1,3,2);plot(y(1,:),y(3,:),’g’)

subplot(1,3,2);xlabel(’Time’)

subplot(1,3,2);ylabel(’pest (X)’)

subplot(1,3,2);axis([0 T -11 101])

subplot(1,3,3);plot( y(1,:),y(2,:),’b’)

subplot(1,3,3);xlabel(’Time’)

subplot(1,3,3);ylabel(’predators (Y)’)

subplot(1,3,3);axis([0 T -11 101])



Appendix C

Excel Calculations - Cost-Benefit
Analysis

To calculate, use: ((price per gallon of organic milk)*(1-(% plant diversity)*1.045)-(price per gallon of regular milk))/(price per gallon of regular milk)

Note: The 1.045 signifies an increase in plant diversity of 4.5% for each cycle. This was used in the extended optimal control as well.

20% to 40.44740306

using 4.5%

20% Plant Diversity

Cycle 1 0.176198729 17.61987291

Cycle 2 0.162966493 16.29664934

Cycle 3 0.149138807 14.9138807

Cycle 4 0.134688875 13.46888749

Cycle 5 0.119588696 11.95886957

Cycle 6 0.103809009 10.38090085

Cycle 7 0.087319235 8.731923539

Cycle 8 0.070087422 7.008742247

Cycle 9 0.052080178 5.208017797

Cycle 10 0.033262607 3.326260747

Cycle 11 0.013598246 1.35982463

Cycle 12 -0.006951011 -0.695101113

Cycle 13 -0.028424985 -2.842498514

Cycle 14 -0.050865288 -5.086528798

Cycle 15 -0.074315404 -7.431540445

Cycle 16 -0.098820776 -9.882077616

Average 5.271005208

0.843360833 84.33608333 0.052710052

5.271005208

10% to 20.22370153

using 4.5%

10% Plant Diversity

Cycle 1 0.32322357 32.32235702

Cycle 2 0.316607452 31.66074523

Cycle 3 0.309693609 30.96936092

Cycle 4 0.302468643 30.24686431

Cycle 5 0.294918554 29.49185535

Cycle 6 0.28702871 28.70287099

Cycle 7 0.278783823 27.87838234

Cycle 8 0.270167917 27.01679169

Cycle 9 0.261164295 26.11642946

Cycle 10 0.251755509 25.17555094

Cycle 11 0.241923329 24.19233288

Cycle 12 0.2316487 23.16487001

Cycle 13 0.220911713 22.09117131

Cycle 14 0.209691562 20.96915617

Cycle 15 0.197966503 19.79665034

Cycle 16 0.185713818 18.57138176

Average 26.14792317

4.183667707 418.3667707 0.261479232

26.14792317
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