
Ursinus College
Digital Commons @ Ursinus College

Computer Science Honors Papers Student Research

4-27-2015

Positive Influence Dominating Set Generation via a
New Greedy Algorithm
Matthew Rink
Ursinus College, marink@ursinus.edu

Adviser: Akshaye Dhawan

Follow this and additional works at: https://digitalcommons.ursinus.edu/comp_hon

Part of the Theory and Algorithms Commons
Click here to let us know how access to this document benefits you.

This Paper is brought to you for free and open access by the Student Research at Digital Commons @ Ursinus College. It has been accepted for
inclusion in Computer Science Honors Papers by an authorized administrator of Digital Commons @ Ursinus College. For more information, please
contact aprock@ursinus.edu.

Recommended Citation
Rink, Matthew, "Positive Influence Dominating Set Generation via a New Greedy Algorithm" (2015). Computer Science Honors Papers.
1.
https://digitalcommons.ursinus.edu/comp_hon/1

http://ursinus.edu?utm_source=digitalcommons.ursinus.edu%2Fcomp_hon%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ursinus.edu?utm_source=digitalcommons.ursinus.edu%2Fcomp_hon%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.ursinus.edu?utm_source=digitalcommons.ursinus.edu%2Fcomp_hon%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.ursinus.edu/comp_hon?utm_source=digitalcommons.ursinus.edu%2Fcomp_hon%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.ursinus.edu/math_comp_stu?utm_source=digitalcommons.ursinus.edu%2Fcomp_hon%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.ursinus.edu/comp_hon?utm_source=digitalcommons.ursinus.edu%2Fcomp_hon%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/151?utm_source=digitalcommons.ursinus.edu%2Fcomp_hon%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ursinus.co1.qualtrics.com/jfe/form/SV_1RIyfqzdxsWfMQ5
https://digitalcommons.ursinus.edu/comp_hon/1?utm_source=digitalcommons.ursinus.edu%2Fcomp_hon%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:aprock@ursinus.edu

Positive Influence Dominating Set Generation
via a New Greedy Algorithm

Matthew Rink

Submitted to the faculty of Ursinus College in fulfillment
of the requirements for Honors in

Computer Science

April 27, 2015

1

Acknowledgements

The author would like to thank the Ursinus College Mathematics and

Computer Science department for continuous support and encouragement.

Contents

0 Abstract 4

1 Introduction 5

1.1 Preliminaries . 6

1.1.1 Modeling Social Networks 6

1.1.2 PIDS . 7

2 Related Work 10

2.1 Introduction of Positive Influence Dominating Sets 10

2.2 Greedy Algorithm for PIDS Generation 12

2.3 A New Greedy Algorithm for TPIDS Generation 15

3 New Greedy Algorithm 18

3.1 Notation . 19

3.2 Algorithm: AltGreedy . 19

3.3 Example . 22

3.3.1 Our Algorithm . 22

3.3.2 WangGreedy and RaeiGreedy 27

4 Simulation and Results 34

4.1 SNAP Library . 34

4.2 Simulations . 35

4.2.1 PIDS Generation . 35

4.2.2 TPIDS Generation . 37

2

CONTENTS 3

5 Conclusion and Future Work 40

6 Appendix: Data 41

Chapter 0

Abstract

Current algorithms in the Positive Influence Dominating Set (PIDS) prob-

lem domain are focused on a specific type of PIDS, the Total Positive Influ-

ence Dominating Set (TPIDS). We have developed an algorithm specifically

targeted towards the non-total type of PIDS. In addition to our new algo-

rithm, we adapted two existing TPIDS algorithms to generate PIDS. We

ran simulations for all three algorithms, and our new algorithm consistently

generates smaller PIDS than either existing algorithm, with our algorithm

generating PIDS approximately 5% smaller than the better of the two exist-

ing algorithms.

4

Chapter 1

Introduction

When working with a collection of objects, it is frequently useful to iden-

tify and select a subset of that collection to concentrate on. Sensor networks,

for example, have interesting problems such as communication between sen-

sors and how to choose which sensors will act as communication hubs. In

the realm of Social Networks, we might wish to advertise to a group of users

that we deem as the most influential. These users usually have the most

connections to other users in the social network. The authors of [4] target a

group of users to reinforce a positive behavior in the network, e.g. curbing

binge drinking. To perform these types of selections, we must first define a

way to represent social networks, and then define a selection criteria.

5

CHAPTER 1. INTRODUCTION 6

1.1 Preliminaries

1.1.1 Modeling Social Networks

We model social networks using the mathematical concept of a graph.

A graph is a collection of nodes with edges between them. For a social

network, the nodes would represent users in the network and the edges would

represent the social connections between the users (for example, ”is friends

with” in Facebook or ”follows” in Twitter). We represent a graph as follows:

G = (V,E), where G is our graph composed of V , the collection of nodes,

and E, the collection of edges. The elements in E take the form of a pair

(a, b), where a, b ∈ V and (a, b) represents the notion that a is ”friends with”

or ”follows” b. For our research, we are exclusively working with undirected

graphs, which means that (a, b)→ (b, a); an undirected graph in this instance

represents a social network where the relationships are always mutual and

bidirectional.

Scale-Free Networks

Scale-free networks are a type of graph that follow a power-law degree

distribution. This means that there are few nodes with relatively high degree

CHAPTER 1. INTRODUCTION 7

(which can be viewed as ”hubs”), and many nodes with low degree. A small

example along with the degree distribution is shown in Figure 1.2.

(a) Example graph
(b) Degree distribution of the graph

Figure 1.1: Example of a power-law graph

[2] showed that social networks tend to form scale-free networks. Thus

for our research we model social networks by randomly generating graphs

using the BarabsiAlbert model of preferential attachment.

1.1.2 PIDS

A Positive Influence Dominating Set (PIDS) is a subset P of a graph

G = (V,E) such that for each node u ∈ V , if less than some fraction (for the

purposes of this research and in the literature, this fraction is fixed at 0.5)

of the neighbors of u are not in P , then u ∈ P . Figure 1.2 shows an example

of a graph and a PIDS on that graph. The nodes in the set P are shown in

CHAPTER 1. INTRODUCTION 8

red.

(a) Example graph (b) PIDS on the graph

Figure 1.2: Example of PIDS on a power-law graph

A Total Positive Influence Dominating Set (TPID) is a similar to a PIDS,

with a single alteration. While in a PIDS P , the nodes in P are exempt from

the requirement of needing half their neighbors to be in P , in a TPIDS this is

not true. Therefore, in a TPIDS T , every node in V has half of its neighbors

in T , including the nodes in T itself. Note the difference between 1.3b and

1.2b.

The difference in definition between TPIDS and PIDS is simple, but it is

enough that algorithms that are suited to creating one may not be suited for

creating the other. We will demonstrate this through simulations in Section

4.2.

CHAPTER 1. INTRODUCTION 9

(a) Example graph (b) TPIDS on the graph

Figure 1.3: Example of TPIDS on a power-law graph

Chapter 2

Related Work

While the topic of dominating sets has decades of research behind it, the

subproblem of Positive Influence Dominating Sets (PIDS) is relatively recent.

The problem was introduced in 2009 in [4].

2.1 Introduction of Positive Influence Domi-

nating Sets

Wang et al. first introduced the PIDS problem in context of looking

for a solution to social issues. An example the paper cites is the issue of

binge drinking on college campuses - intervention programs may not have

10

CHAPTER 2. RELATED WORK 11

the budget to advertise to or take in all binge drinkers. It is then desirable

to select a subset of the binge drinkers such that if the binge drinker is not

directly participating in an intervention program, at least half of their binge

drinking friends are.

For the problem application of binge drinking intervention, Wang et al

categorized nodes as positive, neutral, or negative. They collapsed neutral

and negative into a single negative category, and then used the two remaining

categories (positive and negative) as a starting point for their PIDS. Nodes

that are initially positive (in the notation of the paper, the nodes in C) are

able to influence the other nodes they are connected to, and in some sense

part of the PIDS and in others not. To clarify, the subset P that is output

by the algorithm proposed in [4] is not a PIDS by itself, but P ∪ C will be

the complete PIDS of the graph.

The strategy to select a PIDS used by Wang et al in [4] is to repeatedly

select a 1-dominating set of the nodes V − P ∪ C that have yet to be domi-

nated, and afterwards dominate the nodes in P ∪C by selecting the highest

degree neighbors of those nodes.

The notion of the initial positive compartment C is one that is generally

not seen beyond this paper. Wang et al. do mention that a graph with C = ∅

CHAPTER 2. RELATED WORK 12

is one where every node is initially negative, which is the assumption most

PIDS research has used. It is important to note that in this paper ([4]), the

definition provided for PIDS is what is later called a TPIDS by [1], and so

for the purposes of the current work we use the definitions in [1].

2.2 Greedy Algorithm for PIDS Generation

In their follow up to [4], Wang et al. provide their greedy algorithm for

generating a PIDS, along with an analysis for the approximation ratio of that

algorithm. Their proposed algorithm for generating a PIDS P on a graph

G = (V,E) is as follows:

Notation Definition

nP (u) denotes the neighbors of u in P

deg(u) is the degree of u

h(u) ddeg(u)e
f(P)

∑
u∈V

min(h(u), nP (u))

Algorithm 2.1 WangGreedy algorithm for TPIDS generation

1: P ← ∅
2: while f(P) <

∑
u∈V

h(u) do

3: select u ∈ V − P to maximize f(P ∪ {u})
4: and set P ← P ∪ {u}
5: end while
6: return A

CHAPTER 2. RELATED WORK 13

This algorithm will be referred to as WangGreedy for the purposes of this

paper.

The strategy for algorithm 2.1 is to greedily choose the node that maxi-

mizes their evaluation function f . This function sums the number of neigh-

bors that each node has in the (T)PIDS-in-progress P , with the stipulation

that each node can only contribute up to half its neighbors to the sum. For

example, if a node a has 2 of its 8 neighbors in P , then it contributes 2 to

the sum; if a node b has 5 of its 6 neighbors in P , it only contributes 3, since

3 is the minimum of 5 and 3. It is important to note that node b in this

example is satisfied, in that at least half of its neighbors are in P .

We now take a look at how WangGreedy’s evaluation function f behaves

when generating TPIDS in comparison to generating PIDS. When generating

a TPIDS, the node that maximizes f is simply the node that touches the

most unsatisfied nodes. To see this, consider first that a TPIDS-in-progress

P is empty. Then the node that maximizes f will be the one with the highest

degree, since at first f is 0 because no nodes have any neighbors in P and

therefore all nodes are unsatisfied. Now consider the case where P already

contains some nodes. Then the node u that maximizes f will also be the

one that touches the most unsatisfied nodes, since nodes that are already

CHAPTER 2. RELATED WORK 14

satisfied by P cannot contribute any more to the sum in f because of the

min limitation, therefore the only way f will increase is if u touches unmet

nodes.

We adapt WangGreedy to generate PIDS by altering its evaluation func-

tion:

f(P) =
∑

u∈V−P

min(h(u), nP (u))

Likewise, we also change the while loop condition to be f(P) <
∑

u∈V−P
h(u).

We make these changes because it accurately represents the notion that

in comparison to TPIDS, a PIDS does not require the nodes in P to also have

half their neighbors in P . However, when adapted to the requirements for

PIDS, WangGreedy no longer chooses the nodes that touch the most unmet

nodes. This is because the evaluation function f no longer considers nodes

in P . For example, take a PIDS-in-progress P that currently only contains a

node a. Node a touches 4 unsatisfied nodes b, c, d, e, so f(P) = 4. Say node

b touches 2 unsatisfied nodes, f and g, and neither f nor g touch a. If we

wish to evaluate f(P ∪ {b}) we must note that, unlike the case of TPIDS,

we do not simply add the number of unsatisfied nodes to f(P). If we did,

f(P ∪ {b}) would be 6. However, note that f(P ∪ {b}) = 5, since c, d, e

each touch one node in P ∪ {b} (they touch a) and f, g each touch one node

(b). Note that since we added b to our PIDS, we no longer consider it when

CHAPTER 2. RELATED WORK 15

evaluating our PIDS via f . We can view this as a subtraction from f(P),

in that where b previously contributed 1 to the f sum, it now contributes

nothing, unlike our case when building a TPIDS where both a and b would

still be able to contribute 1 to f(P ∪ {b}) for a total sum of 7. As we

show in our experiments (4), this means WangGreedy doesn’t value nodes as

efficiently when generating PIDS.

2.3 A New Greedy Algorithm for TPIDS Gen-

eration

The authors of [3] take a very different greedy approach to generating

a TPIDS. Their algorithm is as follows (from here on referred to as Raei-

Greedy):

Notation for a node u:

need-degree :

⌈
deg(u)

2

⌉

cover-degree :
∑

w∈n(u)

need-degree(w)

Their approach is to value a node u based on how needy u’s neighbors

are. This has the effect of valuing nodes that might not necessarily connect

to a large number of unsatisfied nodes, but perhaps instead connect to a few

CHAPTER 2. RELATED WORK 16

Algorithm 2.2 RaeiGreedy algorithm for TPIDS generation

1: P ← ∅
2: compute need-degree for each node
3: compute cover-degree for each node

4: while for any u ∈ V (nP (u) <
⌈
deg(u)

2

⌉
) do

5: select u ∈ V − P to maximize cover-degree
6: and set P ← P ∪ {u}
7: subtract 1 from need-degree of neighbors of u
8: revise cover-degree for all w ∈ V − P
9: end while

10: return A

very needy nodes. It is important to note that at line 7, we do not allow a

node’s need-degree to go below 0. If we do, the algorithm will devalue nodes

that are connected to nodes that are already covered by more than half their

neighbors.

The authors of [3] also include a complexity analysis for both their algo-

rithm and for 2.1. Raei et al. made a slight mistake in their analysis however

when considering the worst case size of a TPIDS. They declare that in the

worst case, they would need n
2

nodes, however the example they give actu-

ally requires more than half of the nodes to be selected to form a TPIDS.

To create a TPIDS on that graph (fig. 2.1), it is necessary to use more than

4 nodes. Their example subset on that graph does not qualify as a TPIDS,

because node 8 does not have a neighbor in the TPIDS. Therefore they are

CHAPTER 2. RELATED WORK 17

not justified in saying that they need at most half the nodes for a TPIDS,

since we have an example of a power-law graph in which it is not possible to

construct a TPIDS with at most half the nodes.

Figure 2.1: Power-law graph that needs more than half of the nodes to form
a TPIDS

Chapter 3

New Greedy Algorithm

In this section, we present our algorithm for constructing a Positive In-

fluence Dominating Set (PIDS). Since both WangGreedy [5] and RaeiGreedy

[3] were designed with Total Positive Influence Dominating Sets (TPIDS) in

mind, we seek to develop an algorithm specifically targeted towards gener-

ating a PIDS efficiently. We work off of the framework of the RaeiGreedy

algorithm [3] to take advantage of their improved time complexity over Wang-

Greedy, evaluating nodes base on a different criterion.

18

CHAPTER 3. NEW GREEDY ALGORITHM 19

3.1 Notation

Here we define the notation necessary for our algorithm. Let G = (V,E)

be a graph G with nodes V and edges E. Let P be our PIDS on G. For

some node u ∈ V :

Notation Definition

d(u) degree of node u

h(u)
⌈
d(u)
2

⌉
n(u) the set of the neighbors of u

nP (u) n(u) ∩ P

3.2 Algorithm: AltGreedy

We first define the following functions s() and g() on a node u :

s(u) =

{
1 if nP (u) ≥ h(u) or u ∈ P

0 otherwise

g(u) = s(u) +
∑

w∈n(u)

1− s(w)

Our first function, s(u), represents whether a node is satisfied under the

definition of a PIDS. To adapt s to test satisfaction under TPIDS, we simply

remove the ”or u ∈ P” qualification, since in TPIDS every node needs to

CHAPTER 3. NEW GREEDY ALGORITHM 20

have at least half of its neighbors in our TPIDS subset (sec. 1.1.2).

Our second function, g(u), tallies the number of unsatisfied neighbors a

node u touches. To this tally, we add 1 if u is unsatisfied. We do this because

as noted in the definition of PIDS (sec. 1.1.2), a node can be satisfied either

by having half of its neighbors in our PIDS P , or by being in P itself. Thus

we increment the tally by 1 to indicate that selecting this node comes with

the added benefit of satisfying it instantly.

Our algorithm is as follows:

1: P ← ∅
2: compute g(u) value for all u ∈ V

3: while P is not a PIDS do

4: select u ∈ V − P to maximize g(u)

5: and set P ← P ∪ {u}
6: revise g(w) values for all w ∈ V − P

7: end while

8: return P

Our algorithm’s strategy for generating a PIDS is to greedily select the

node that is connected to the most unsatisfied nodes, and add that to the

PIDS-under-construction. To accomplish this, after creating our empty set

A that will become our PIDS at termination, we compute g values for all the

nodes in our graph V . Our loop simply chooses the node with the maximum

g value, adds that to A, and recomputes the g values for the remaining nodes

CHAPTER 3. NEW GREEDY ALGORITHM 21

that are not in A. This is very similar in flow to the algorithm presented by

Raei et al. (sec. 2.3) [3], but we are substituting RaeiGreedy’s cover-degree

criterion with our g function.

We chose to use the strategy of selecting the node that is connected to the

most unsatisfied nodes, taking into account whether the node in question is

unsatisfied or not, because we are specifically targeting PIDS generation with

our algorithm. Both algorithms WangGreedy 2.1 and RaeiGreedy 2.2 ([5],[3])

are aiming to construct a TPIDS. Section 3.3.2 simulates those algorithms

running on an example graph, and section 4 examines the performance of

those algorithms via several experiments.

Complexity Analysis

Since the psuedocode is structured much like that of RaeiGreedy 2.2 [3],

we are able to reference their time complexity proof ([3]) to show that our

algorithm is O(n2).

The loop in line 3 will run at most n times, since we can only add as

many nodes to our PIDS A as we have altogether, and each iteration of the

loop adds a node from V to A.

The first thing we do in the loop is to check if A is a PIDS or not, and

CHAPTER 3. NEW GREEDY ALGORITHM 22

only continue if the latter is true (this also takes place on line 3). In the

worst case, we need to evaluate every node to check if it satisfies the PIDS

conditions, so the complexity of this step is O(n).

Lines 4 and 6 of our algorithm both take O(n), since we will have to

choose from and revise first n nodes, then n − 1 nodes, etc. Line 5 takes

constant time (O(1)).

Therefore, our algorithm’s time complexity is O(n2).

3.3 Example

We will demonstrate our algorithm on a small example graph, and after-

wards demonstrate the other two algorithms, WangGreedy and RaeiGreedy,

to better illustrate the differences between them.

3.3.1 Our Algorithm

We choose a node u ∈ V to maximize g(u). For the first round, the

g(u) values are as follows (along with the f values for WangGreedy and the

cover-degrees for RaeiGreedy):

CHAPTER 3. NEW GREEDY ALGORITHM 23

Figure 3.1: Small graph V before selecting any nodes

Node u g(u) Node u g(u)

0 4 5 3

1 2 6 2

2 5 7 2

3 3 8 2

4 3 9 2

As seen, node 2 is the most desirable node, since it touches the most

unmet nodes (4), and is unsatisfied currently (+1). We thus add node 2 to

our work-in-progress PIDS A.

We now recalculate g values:

CHAPTER 3. NEW GREEDY ALGORITHM 24

Figure 3.2: After selecting node 2. Red nodes are part of the PIDS A, blue
nodes are satisfied by A, and grey are unsatisfied nodes.

Node g(u) Node g(u)

0 3 5 1

1 2 6 1

2 N/A 7 2

3 1 8 0

4 2 9 2

Node 2’s score is not considered since since it is already in A. Therefore

our best choice for this round is node 0, since it is connected to two other

unsatisfied nodes and is unsatisfied itself.

Once again, we recalculate g values:

CHAPTER 3. NEW GREEDY ALGORITHM 25

Figure 3.3: After selecting node 0. Red nodes are part of the PIDS A, blue
nodes are satisfied by A, and grey are unsatisfied nodes.

Node g(u) Node g(u)

0 N/A 5 1

1 0 6 1

2 N/A 7 0

3 1 8 0

4 2 9 2

Note now that nodes 4 and 9 are valued equally by our evaluation function

g. For this example, we break the tie randomly, choosing node 9 to add to

A.

We revise our g scores a final time:

CHAPTER 3. NEW GREEDY ALGORITHM 26

Figure 3.4: After selecting node 9. Red nodes are part of the PIDS A, blue
nodes are satisfied by A, and grey are unsatisfied nodes.

Node g(u) Node g(u)

0 N/A 5 1

1 0 6 1

2 N/A 7 0

3 0 8 0

4 0 9 N/A

Once again we have a tie, so for this example we break it randomly and

choose node 5.

We now have a PIDS A. We can verify this by observing that every blue

node has at least half of its neighbor’s colored red (which represents that

they are in A).

CHAPTER 3. NEW GREEDY ALGORITHM 27

Figure 3.5: After selecting node 5. Red nodes are part of the PIDS A, blue
nodes are satisfied by A, and grey are unsatisfied nodes.

3.3.2 WangGreedy and RaeiGreedy

We now demonstrate the differences between the decisions our algorithm

made compared to WangGreedy and RaeiGreedy. The tables below each

figure feature a column for WangGreedy (the f column) and two columns for

RaeiGreedy (the need-degree and cover-degree columns).

CHAPTER 3. NEW GREEDY ALGORITHM 28

Figure 3.6: Small graph V before selecting any nodes

Node f(P ∪ u) need-degree cover-degree

0 3 2 4

1 1 1 2

2 4 2 5

3 2 1 3

4 2 1 2

5 2 1 3

6 1 1 1

7 1 1 2

8 1 1 2

9 1 1 1

CHAPTER 3. NEW GREEDY ALGORITHM 29

Figure 3.7: Node 2 added to P

Node f(P ∪ u) need-degree cover-degree

0 5 1 2

1 5 1 1

2 N/A 0 N/A

3 4 0 1

4 5 1 1

5 4 0 1

6 4 1 0

7 5 1 1

8 3 0 0

9 5 1 1

Note that WangGreedy values many nodes equally when both RaeiGreedy

and AltGreedy valued a few nodes higher than the rest. Specifically note

that nodes 1 and 7 are valued the same as node 0 in WangGreedy, when

RaeiGreedy and AltGreedy valued 0 more than 1 and 7. For the sake of

CHAPTER 3. NEW GREEDY ALGORITHM 30

this example, we say WangGreedy gets lucky and randomly breaks the tie

selecting node 0.

Figure 3.8: Node 0 added to P

Node f(P ∪ u) need-degree cover-degree

0 N/A 0 N/A

1 4 0 0

2 N/A 0 N/A

3 5 0 1

4 6 1 1

5 5 0 1

6 5 1 0

7 4 0 0

8 4 0 0

9 6 1 1

Here RaeiGreedy is unable to value nodes 4 and 9 higher than node 3.

For the sake of this example, we once again say that both algorithms got

CHAPTER 3. NEW GREEDY ALGORITHM 31

lucky and broke the tie to select node 9.

Figure 3.9: Node 9 added to P

Node f(P ∪ u) need-degree cover-degree

0 N/A 0 N/A

1 5 0 0

2 N/A 0 N/A

3 5 0 0

4 5 0 0

5 6 0 1

6 6 1 0

7 5 0 0

8 5 0 0

9 N/A 0 N/A

For our final node, we say that WangGreedy randomly breaks the tie

choosing node 5.

CHAPTER 3. NEW GREEDY ALGORITHM 32

Figure 3.10: Node 5 added to P

Our final PIDS ends up being the same, but only because the ties were

broken in very specific ways. It is easy to see that if they had been broken

in other ways, our PIDS would have been larger. To illustrate this, here 3.11

shows the final PIDS if WangGreedy had broken the tie at 3.7 differently.

While in this small graph, the result is just one node too many, on larger

graphs the difference is much more noticeable, and this is seen in our results

in Section 4.

CHAPTER 3. NEW GREEDY ALGORITHM 33

Figure 3.11: The result of WangGreedy with different random tie breakers

Chapter 4

Simulation and Results

All three algorithms were tested by having them generate PIDS on ran-

dom scale-free graphs. The simulations were designed to allow us to compare

our algorithms with those in [3].

4.1 SNAP Library

We used the Stanford Network Analysis Platform (SNAP) to implement

and perform our simulations. The C++ SNAP library allowed us to easily

generate scale-free networks using their implementation of the BarabsiAlbert

model. It allowed us to quickly implement the algorithms in question and

scale to larger graphs easily.

34

CHAPTER 4. SIMULATION AND RESULTS 35

4.2 Simulations

Using the SNAP library to generate graphs with power-law degree dis-

tribution (via the BarabsiAlbert algorithm), we ran several simulations to

compare the PIDS and TPIDS generated by the three algorithms (Wang-

Greedy, RaeiGreedy, and AltGreedy).

All data for our simulations is included in section 6. Figures have the

table number included in the caption.

4.2.1 PIDS Generation

PIDS were generated on graphs of sizes 500-1000 (increments of 100), all

with an average degree of 10, 600 graphs in total. The average size of the

PIDS generated by the algorithms during this simulation are displayed in fig.

4.1.

In addition to these results, the RaeiGreedy and AltGreedy algorithms

were run on datasets of larger graphs of sizes 5000-25000 (increments of 5000,

average degree 10), seen in 4.2.

The data shows that for our simulations the PIDS generated by Raei-

Greedy and AltGreedy are smaller than those generated by WangGreedy. In

addition, on average the PIDS generated by our AltGreedy algorithm are

CHAPTER 4. SIMULATION AND RESULTS 36

(a) Average PIDS size (b) Average PIDS %

Figure 4.1: PIDS Results for # nodes n = 500 → 1000, 100 iterations per
size (table 6.1)

(a) Average PIDS size (b) Average PIDS %

Figure 4.2: PIDS Results for # nodes n = 5000→ 25000 (table 6.2)

smaller than those generated by RaeiGreedy. To further demonstrate this,

we ran the simulation on a larger dataset of 6000 graphs, sizes 500-1000 in

increments of 100 with an average degree of 10. This data confirms the afore-

mentioned results that AltGreedy produces smaller PIDS than RaeiGreedy.

CHAPTER 4. SIMULATION AND RESULTS 37

(a) Average PIDS size (b) Average PIDS %

Figure 4.3: PIDS Results for # nodes n = 500 → 1000, 1000 iterations per
size (table 6.3)

4.2.2 TPIDS Generation

We also ran simulations for the Total Positive Influence Dominating Set

(TPIDS) generation. As expected, on average the TPIDS were larger than

the PIDS for the same graph. Interestingly, TPIDS and PIDS exhibit oppo-

site behaviors for certain tests. To replicate an experiment from [3], we used

all three algorithms to generate both TPIDS (as in the original experiment)

and also PIDS for graphs of fixed size 200, while incrementing the average

degree by 2.

For TPIDS, the data corresponds to the results published in [3], in that

the higher the average degree, the smaller the average TPIDS. However, the

opposite behavior is exhibited when we generate a PIDS, i.e., a higher average

degree means we select more nodes. This behavior makes sense, because when

CHAPTER 4. SIMULATION AND RESULTS 38

(a) Average TPIDS Size (b) Average PIDS Size

Figure 4.4: PIDS and TPIDS results for fixing number nodes n = 200,
varying average degree 2→ 20 in increments of 2 (tables 6.5 and 6.4)

generating a TPIDS (T), not only do the nodes not in T need to have half

of their neighbors in T , but so do the nodes in T itself. When there is a low

average degree, and the graphs follow a power-law degree distribution, the

graphs have only a few nodes with high degree and many nodes with low

degree. Figure 4.5 demonstrates this effect on a small scale, with blue nodes

being satisfied according to PIDS and red nodes being satisfied according

to TPIDS, red/blue nodes satisfied under both, and grey nodes unsatisfied.

When we select the node A, all of its neighboring nodes are now satisfied

under both TPIDS and PIDS. However, A itself is not satisfied under TPIDS,

so if we were trying to generate a TPIDS we would need to select some of A’s

neighbors. This explains why there is a reverse trend in TPIDS and PIDS

when the average degree is small.

CHAPTER 4. SIMULATION AND RESULTS 39

(a) Graph with small average degree (b) Graph after selecting node A

Figure 4.5: PIDS vs TPIDS satisfaction

Chapter 5

Conclusion and Future Work

Our results show that our algorithm produces smaller PIDS than Wang-

Greedy and RaeiGreedy; however it produces TPIDS of similar size as those

generated by WangGreedy. This suggests that any further algorithmic devel-

opment must be tested against both TPIDS and PIDS, since their different

qualifications require different approaches. In addition, our PIDS selection

function g could be refined through further experimentation (for example,

weighting nodes more heavily than simply adding 1 if they are unsatisfied).

40

Chapter 6

Appendix: Data

Nodes AltGreedy WangGreedy RaeiGreedy
500 166.18 187.75 173.76
600 198.66 228.36 208.94
700 231.32 266.08 243.92
800 263.91 307.77 278.42
900 295.63 349.32 310.49
1000 328.19 388.55 344.15

Table 6.1: PIDS Results for # nodes n = 500→ 1000, 100 iterations per size
(figure 4.1)

Nodes AltGreedy RaeiEtAl
5000 1627.52 1712.03
10000 3262.28 3425.9
15000 4884.39 5159.58
20000 6511.08 6838.65
25000 8141.11 8575.88

Table 6.2: PIDS Results for # nodes n = 5000→ 25000 (figure 4.2)

41

CHAPTER 6. APPENDIX: DATA 42

Nodes AltGreedy RaeiGreedy
500 165.809 174.045
600 198.348 208.628
700 231.115 243.479
800 263.747 278.262
900 296.436 310.527
1000 328.619 344.667

Table 6.3: PIDS Results for # nodes n = 500 → 1000, 1000 iterations per
size (figure 4.3)

Degree AltGreedy RaeiGreedy WangGreedy
2 59.68 60.92 60.45
4 55.74 62.56 66.33
6 65.68 69.58 70
8 64.01 67.89 78.27
10 68.73 71.78 75.69
12 67.89 70.7 82.96
14 69.91 72 79.21
16 69.57 71.26 87.26
18 71.02 72.56 81.51
20 70.71 72.26 89.44

Table 6.4: PIDS results for fixing number nodes n = 200, varying average
degree 2→ 20 in increments of 2 (figure 4.4b)

CHAPTER 6. APPENDIX: DATA 43

Degree AltGreedy RaeiGreedy WangGreedy
2 90.34 90.4 90.4
4 84.35 83.97 83.71
6 86.52 86.41 86.33
8 83.11 83.11 83.13
10 83.89 83.44 83.84
12 81.87 81.27 81.86
14 82.92 82.24 82.79
16 81.66 80.62 81.34
18 81.9 81.06 81.99
20 81.3 80.34 81.09

Table 6.5: TPIDS results for fixing number nodes n = 200, varying average
degree 2→ 20 in increments of 2 (figure 4.4a)

Bibliography

[1] Thang N Dinh, Yilin Shen, Dung T Nguyen, and My T Thai. On the
approximability of positive influence dominating set in social networks.
Journal of Combinatorial Optimization, 27(3):487–503, 2014.

[2] Stephen Eubank, VS Kumar, Madhav V Marathe, Aravind Srinivasan,
and Nan Wang. Structural and algorithmic aspects of massive social
networks. In Proceedings of the fifteenth annual ACM-SIAM symposium
on Discrete algorithms, pages 718–727. Society for Industrial and Applied
Mathematics, 2004.

[3] Hassan Raei, Nasser Yazdani, and Masoud Asadpour. A new algorithm
for positive influence dominating set in social networks. In Proceedings
of the 2012 International Conference on Advances in Social Networks
Analysis and Mining (ASONAM 2012), pages 253–257. IEEE Computer
Society, 2012.

[4] Feng Wang, Erika Camacho, and Kuai Xu. Positive influence dominat-
ing set in online social networks. In Combinatorial Optimization and
Applications, pages 313–321. Springer, 2009.

[5] Feng Wang, Hongwei Du, Erika Camacho, Kuai Xu, Wonjun Lee, Yan
Shi, and Shan Shan. On positive influence dominating sets in social
networks. Theoretical Computer Science, 412(3):265–269, 2011.

44

	Ursinus College
	Digital Commons @ Ursinus College
	4-27-2015

	Positive Influence Dominating Set Generation via a New Greedy Algorithm
	Matthew Rink
	Recommended Citation

	tmp.1430162486.pdf.rwFBX

